Patents by Inventor Shubha Bommalingaiahnapallya

Shubha Bommalingaiahnapallya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111531
    Abstract: Methods for frequency scaling for per-core accelerator assignments and associated apparatus. A processor includes a CPU (central processing unit) having multiple cores that can be selectively configured to support frequency scaling and instruction extensions. Under this approach, some cores can be configured to support a selective set of AVX instructions (such as AVX3/5G-ISA instructions) and/or AMX instructions, while other cores are configured to not support these AVX/AMX instructions. In one aspect, the selective AVX/AMX instructions are implemented in one or more ISA extension units that are separate from the main processor core (or otherwise comprises a separate block of circuitry in a processor core) that can be selectively enabled or disabled. This enables cores having the separate unit(s) disabled to consume less power and/or operate at higher frequencies, while supporting the selective AVX/AMX instructions using other cores.
    Type: Application
    Filed: September 15, 2023
    Publication date: April 4, 2024
    Inventors: Stephen T. PALERMO, Srihari MAKINENI, Shubha BOMMALINGAIAHNAPALLYA, Neelam CHANDWANI, Rany T. ELSAYED, Udayan MUKHERJEE, Lokpraveen MOSUR, Adwait PURANDARE
  • Patent number: 11775298
    Abstract: Methods for frequency scaling for per-core accelerator assignments and associated apparatus. A processor includes a CPU (central processing unit) having multiple cores that can be selectively configured to support frequency scaling and instruction extensions. Under this approach, some cores can be configured to support a selective set of AVX instructions (such as AVX3/5G-ISA instructions) and/or AMX instructions, while other cores are configured to not support these AVX/AMX instructions. In one aspect, the selective AVX/AMX instructions are implemented in one or more ISA extension units that are separate from the main processor core (or otherwise comprises a separate block of circuitry in a processor core) that can be selectively enabled or disabled. This enables cores having the separate unit(s) disabled to consume less power and/or operate at higher frequencies, while supporting the selective AVX/AMX instructions using other cores.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: October 3, 2023
    Assignee: Intel Corporation
    Inventors: Stephen T. Palermo, Srihari Makineni, Shubha Bommalingaiahnapallya, Neelam Chandwani, Rany T. Elsayed, Udayan Mukherjee, Lokpraveen Mosur, Adwait Purandare
  • Publication number: 20230217253
    Abstract: Systems, methods, and apparatus for workload optimized central processing units are disclosed herein. An example apparatus includes a workload analyzer to determine an application ratio associated with the workload, the application ratio based on an operating frequency to execute the workload, a hardware configurator to configure, before execution of the workload, at least one of (i) one or more cores of the processor circuitry based on the application ratio or (ii) uncore logic of the processor circuitry based on the application ratio, and a hardware controller to initiate the execution of the workload with the at least one of the one or more cores or the uncore logic.
    Type: Application
    Filed: March 26, 2021
    Publication date: July 6, 2023
    Inventors: Stephen Palermo, Srihari Makineni, Shubha Bommalingaiahnapallya, Rany ElSayed, Lokpraveen Mosur, Neelam Chandwani, Pinkesh Shah, Rajesh Gadiyar, Shrikant M. Shah, Uzair Qureshi
  • Publication number: 20230205606
    Abstract: Systems, apparatus, and methods to workload optimize hardware are disclosed herein. An example apparatus includes power control circuitry to determine an application ratio based on an instruction to be executed by one or more cores of a processor to execute a workload, and configure, before the execution of the workload, at least one of (i) the one or more cores of the processor based on the application ratio or (ii) uncore logic of the processor based on the application ratio, and execution circuitry to execute the workload with the at least one of the one or more cores or the uncore logic.
    Type: Application
    Filed: March 26, 2021
    Publication date: June 29, 2023
    Inventors: Stephen Palermo, Neelam Chandwani, Kshitij Doshi, Chetan Hiremath, Rajesh Gadiyar, Udayan Mukherjee, Daniel Towner, Valerie Parker, Shubha Bommalingaiahnapallya, Rany ElSayed
  • Publication number: 20220094590
    Abstract: Self-healing networks of Infrastructure Processing Units (IPUs) and associated methods and apparatus. The self-healing IPUs manage other processing units (XPU) clusters by seamlessly migrating the IPU responsibilities to another IPU in the networked environment (e.g., data center) that may be available when an IPU failures or becomes unavailable. A central Resource Manager is used to monitors the health of the IPUs in the data center and in the event of in IPU failure, locates another IPU and assigns it to take over the failed IPU's functions. Replacement and workload migration of a failed XPU in an IPU managed XPU cluster with a remote XPU that is network connected is also supported. The IPU monitors the health of the XPUs in its cluster an informs the Resource Manager of an XPU failure which locates another XPU in the data center and assigns it to the cluster that has the failed XPU.
    Type: Application
    Filed: December 7, 2021
    Publication date: March 24, 2022
    Inventors: Reshma LAL, Pallavi DHUMAL, Shubha BOMMALINGAIAHNAPALLYA, Asmae MHASSNI
  • Publication number: 20210334101
    Abstract: Methods for frequency scaling for per-core accelerator assignments and associated apparatus. A processor includes a CPU (central processing unit) having multiple cores that can be selectively configured to support frequency scaling and instruction extensions. Under this approach, some cores can be configured to support a selective set of AVX instructions (such as AVX3/5G-ISA instructions) and/or AMX instructions, while other cores are configured to not support these AVX/AMX instructions. In one aspect, the selective AVX/AMX instructions are implemented in one or more ISA extension units that are separate from the main processor core (or otherwise comprises a separate block of circuitry in a processor core) that can be selectively enabled or disabled. This enables cores having the separate unit(s) disabled to consume less power and/or operate at higher frequencies, while supporting the selective AVX/AMX instructions using other cores.
    Type: Application
    Filed: July 20, 2020
    Publication date: October 28, 2021
    Inventors: Stephen T. Palermo, Srihari Makineni, Shubha Bommalingaiahnapallya, Neelam Chandwani, Rany T. Elsayed, Udayan Mukherjee, Lokpraveen Mosur, Adwait Purandare
  • Patent number: 7630159
    Abstract: An apparatus and method for determining a resistance of a magneto-resistive head. A current drawn by the head, in response to a fixed bias voltage across the head, is converted to a zero temperature coefficient current such that when supplied to a resistor connected to an input terminal of a comparator the effects of variations in the resistance value are avoided. An output signal of the comparator indicates the resistance of the magneto-resistive head.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: December 8, 2009
    Assignee: Agere Systems Inc.
    Inventors: Scott M. O'Brien, Michael P. Straub, Jeffrey A. Gleason, Shubha Bommalingaiahnapallya, Nameeta Krenz, Arvind Aemireddy
  • Publication number: 20060267582
    Abstract: An apparatus and method for determining a resistance of a magneto-resistive head. A current drawn by the head, in response to a fixed bias voltage across the head, is converted to a zero temperature coefficient current such that when supplied to a resistor connected to an input terminal of a comparator the effects of variations in the resistance value are avoided. An output signal of the comparator indicates the resistance of the magneto-resistive head.
    Type: Application
    Filed: May 27, 2005
    Publication date: November 30, 2006
    Inventors: Scott O'Brien, Michael Straub, Jeffrey Gleason, Shubha Bommalingaiahnapallya, Nameeta Krenz, Arvind Aemireddy