Patents by Inventor Shuji Nakamua

Shuji Nakamua has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8524012
    Abstract: A method for growing planar, semi-polar nitride film on a miscut spinel substrate, in which a large area of the planar, semi-polar nitride film is parallel to the substrate's surface. The planar films and substrates are: (1) {1011} gallium nitride (GaN) grown on a {100} spinel substrate miscut in specific directions, (2) {1013} gallium nitride (GaN) grown on a {110} spinel substrate, (3) {1122} gallium nitride (GaN) grown on a {1100} sapphire substrate, and (4) {1013} gallium nitride (GaN) grown on a {1100} sapphire substrate.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: September 3, 2013
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Troy J. Baker, Benjamin A. Haskell, Paul T. Fini, Steven P. DenBaars, James S. Speck, Shuji Nakamua
  • Patent number: 8399789
    Abstract: A keyboard having: a base panel, a switch panel including a hole portion, a membrane sheet including a contact portion, a key top adapted to be depressed for switching the contact portion ON, and a housing supporting and guiding the key top to move freely in a vertical direction, including each a tube portion on an upper end side having a guide hole formed for inserting a stem formed integrally with the key top and a flange portion on an lower end side extending laterally around the tube portion in a size larger than the hole portion; wherein the housing is inserted into the hole portion from a back side of the switch panel, the flange portion being attached to the back side of the switch panel.
    Type: Grant
    Filed: March 4, 2009
    Date of Patent: March 19, 2013
    Assignee: Fujitsu Component Limited
    Inventors: Takeshi Nishino, Shuji Nakamua
  • Publication number: 20120119222
    Abstract: A method for growing planar, semi-polar nitride film on a miscut spinel substrate, in which a large area of the planar, semi-polar nitride film is parallel to the substrate's surface. The planar films and substrates are: (1) {1011} gallium nitride (GaN) grown on a {100} spinel substrate miscut in specific directions, (2) {1013} gallium nitride (GaN) grown on a {110} spinel substrate, (3) {1122} gallium nitride (GaN) grown on a {1100} sapphire substrate, and (4) {1013} gallium nitride (GaN) grown on a {1100} sapphire substrate.
    Type: Application
    Filed: January 24, 2012
    Publication date: May 17, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Troy J. Baker, Benjamin A. Haskell, Paul T. Fini, Steven P. DenBaars, James S. Speck, Shuji Nakamua
  • Patent number: 8128756
    Abstract: A method for growing planar, semi-polar nitride film on a miscut spinel substrate, in which a large area of the planar, semi-polar nitride film is parallel to the substrate's surface. The planar films and substrates are: (1) {10 11} gallium nitride (GaN) grown on a {100} spinel substrate miscut in specific directions, (2) {10 13 } gallium nitride (GaN) grown on a {110} spinel substrate, (3) {11 22} gallium nitride (GaN) grown on a {1 100} sapphire substrate, and (4) {10 13} gallium nitride (GaN) grown on a {1 100} sapphire substrate.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: March 6, 2012
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Troy J. Baker, Benjamin A. Haskell, Paul T. Fini, Steven P. DenBaars, James S. Speck, Shuji Nakamua
  • Publication number: 20110012234
    Abstract: A method of fabricating an optoelectronic device, comprising growing an active layer of the device on an oblique surface of a suitable material, wherein the oblique surface comprises a facetted surface. The present invention also discloses a method of fabricating the facetted surfaces. One fabrication process comprises growing an epitaxial layer on a suitable material, etching the epitaxial layer through a mask to form the facets having a specific crystal orientation, and depositing one or more active layers on the facets. Another method comprises growing a layer of material using a lateral overgrowth technique to produce a facetted surface, and depositing one or more active layers on the facetted surfaces. The facetted surfaces are typically semipolar planes.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hong Zhong, John F. Kaeding, Rajat Sharma, James S. Speck, Steven P. DenBaars, Shuji Nakamua
  • Publication number: 20100133663
    Abstract: A method for growing planar, semi-polar nitride film on a miscut spinel substrate, in which a large area of the planar, semi-polar nitride film is parallel to the substrate's surface.
    Type: Application
    Filed: February 1, 2010
    Publication date: June 3, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Troy J. Baker, Benjamin A. Haskell, Paul T. Fini, Steven P. DenBaars, James S. Speck, Shuji Nakamua
  • Publication number: 20090224948
    Abstract: A keyboard having: a base panel, a switch panel including a hole portion, a membrane sheet including a contact portion, a key top adapted to be depressed for switching the contact portion ON, and a housing supporting and guiding the key top to move freely in a vertical direction, including each a tube portion on an upper end side having a guide hole formed for inserting a stem formed integrally with the key top and a flange portion on an lower end side extending laterally around the tube portion in a size larger than the hole portion; wherein the housing is inserted into the hole portion from a back side of the switch panel, the flange portion being attached to the back side of the switch panel.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Applicant: FUJITSU COMPONENT LIMITED
    Inventors: Takeshi Nishino, Shuji Nakamua