Patents by Inventor Shuji Tomura

Shuji Tomura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10170988
    Abstract: An operation mode selection unit selects an operation mode of a power converter and generates a mode selection signal indicating the result of selection, in accordance with a load condition and a power supply condition. An operation mode switching control unit generates a mode control signal designating an operation mode of the power converter. When the operation mode currently selected by the mode control signal is different from an operation mode indicated by the mode selection signal, the operation mode switching control unit adjusts a power distribution ratio between a plurality of DC power supplies or an output voltage on an electric power line so as not to change abruptly, and then permits a transition of operation mode.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: January 1, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masanori Ishigaki, Shuji Tomura, Naoki Yanagizawa, Masaki Okamura
  • Patent number: 10135327
    Abstract: Outputs from first and second DC power supplies are controlled based on a first reactor current and a second reactor current. For controlling an output from a corresponding DC power supply, a relative maximum point and a relative minimum point as two inflection points are provided in a high current of the first and second reactor currents in one control cycle, by controlling on and off of switching elements. In a low current of the first and second reactor currents, inflection points more than in the high current are provided. Each of the inflection points on a side of the high current is provided at timing identical to the inflection point on a side of the low current.
    Type: Grant
    Filed: August 31, 2016
    Date of Patent: November 20, 2018
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeaki Goto, Shuji Tomura, Naoki Yanagizawa, Masaki Okamura, Naoyoshi Takamatsu
  • Publication number: 20180269774
    Abstract: Outputs from first and second DC power supplies are controlled based on a first reactor current and a second reactor current. For controlling an output from a corresponding DC power supply, a relative maximum point and a relative minimum point as two inflection points are provided in a high current of the first and second reactor currents in one control cycle, by controlling on and off of switching elements. In a low current of the first and second reactor currents, inflection points more than in the high current are provided. Each of the inflection points on a side of the high current is provided at timing identical to the inflection point on a side of the low current.
    Type: Application
    Filed: August 31, 2016
    Publication date: September 20, 2018
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeaki GOTO, Shuji TOMURA, Naoki YANAGIZAWA, Masaki OKAMURA, Naoyoshi TAKAMATSU
  • Publication number: 20180248484
    Abstract: A relative maximum point and a relative minimum point, are provided in a first reactor current and a second reactor current within one control cycle as a result of control of on and off of switching elements. At least one of the inflection points in the first and second reactor currents, a plurality of switching elements to simultaneously be turned on or and off are controlled to be turned on or off in a prescribed order with a time lag being set. At the inflection point with the time lag being set, a switching loss is produced in a switching element turned on later or a switching element turned on earlier in accordance with the prescribed order.
    Type: Application
    Filed: August 31, 2016
    Publication date: August 30, 2018
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeaki GOTO, Shuji TOMURA, Naoki YANAGIZAWA, Masaki OKAMURA, Naoyoshi TAKAMATSU
  • Patent number: 9973071
    Abstract: The power converter includes a first operation mode in which each of switching elements is controlled on or off independently so as to perform a power conversion between a load and both a first DC power source and a second DC power source and a second operation mode in which every two of the switching elements are controlled on or off concurrently so as to perform the power conversion between the load and the first DC power source or the second DC power source. A switching speed at which when each of the switching elements is turned on or turned off is controlled in accordance with the operation mode. Specifically, the switching speed in the second operation mode is higher than the switching speed in the first operation mode.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: May 15, 2018
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masanori Ishigaki, Shuji Tomura, Takaji Umeno, Masaki Okamura, Daigo Nobe
  • Patent number: 9954454
    Abstract: A DC/DC converter is able to step down a voltage value of a high-voltage battery, and is able to step up a voltage value of a low-voltage battery. The low-voltage battery is a battery that provides a lower voltage value than the high-voltage battery. The DC/DC converter includes a transformer, a third diode and a reactor. The transformer includes a first coil and a second coil. The first coil is connected to the low-voltage battery. The second coil is connected to the high-voltage battery. An anode of the third diode is connected to one end of the first coil. One end of the reactor is connected to a cathode of the third diode, and the other end of the reactor is connected to a positive electrode terminal of the low-voltage battery.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 24, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuji Nishi, Hiromasa Tanaka, Masanori Ishigaki, Shuji Tomura
  • Patent number: 9941694
    Abstract: A power supply system includes first and second DC power supplies and a power converter. The power converter includes first and third semiconductor elements electrically connected between respective nodes of a first node and a second node and a power line, second and fourth semiconductor elements electrically connected between respective nodes of the first node and the second node and a second power line, a fifth semiconductor element electrically connected between the first and second nodes, and first and second reactors. The first reactor is electrically connected in series with the first DC power supply, between the first node and the second power line. The second reactor is electrically connected in series with the second DC power supply, between the second power line and the second node. A control device controls on and off of the switching element included in the semiconductor element.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: April 10, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuji Tomura, Shigeaki Goto, Naoki Yanagizawa, Masaki Okamura, Naoyoshi Takamatsu
  • Patent number: 9935548
    Abstract: A power supply system includes first and second DC power supplies and a power converter having first to fifth semiconductor elements and first and second reactors. The first and fourth semiconductor elements are electrically connected between a first node and a second node, and a first power line, respectively. Second and third switching elements are electrically connected between the first node and the second node, and a second power line, respectively. A fifth switching element is electrically connected between the first node and the second node. The first reactor is electrically connected in series with the first DC power supply, between the first node and the second power line. The second reactor is electrically connected in series with the second DC power supply, between the first power line and the second node.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: April 3, 2018
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeaki Goto, Masanori Ishigaki, Shuji Tomura, Takahide Sugiyama, Takaji Umeno, Masaki Okamura, Naoyoshi Takamatsu
  • Patent number: 9906133
    Abstract: An electric source control apparatus has: a determining device for determining whether a converter operates in a first mode or a second mode, wherein the first mode prioritizes increase of efficiency of the electric power conversion than the second mode does and the second mode prioritizes suppression of increase of element temperature of the switching element than the first mode does; and a controlling device for controlling the converter so that (i) a switching pattern becomes a first pattern, if the converter operates in the first mode and (ii) the switching pattern becomes a second pattern, if the converter operates in the second mode, wherein the first pattern is capable of increasing the efficiency of the electric power conversion more than the second pattern is and the second pattern is capable of suppressing the increase of the element temperature more than the first pattern is.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: February 27, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoyoshi Takamatsu, Masaki Okamura, Shuji Tomura, Masanori Ishigaki, Naoki Yanagizawa
  • Patent number: 9906130
    Abstract: An electrical source system has an electrical power converter which has a plurality of switching elements and performs an electrical power conversion with first and second electricity storage apparatus; and a control apparatus which controls an operation of the electrical power converter, when the electrical power converter performs the electrical power conversion with one electricity storage apparatus, the control apparatus controls the electrical power converter to change a switching state of one of two switching elements while keeping a switching state of the other one of the two switching elements in an ON state, each of two switching elements constitutes predetermined arm element whose switching state should be changed to perform the electrical power conversion with the one electricity storage apparatus.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: February 27, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaya Kaji, Shuji Tomura, Masanori Ishigaki, Naoki Yanagizawa
  • Patent number: 9895980
    Abstract: A power converter has a series direct connection mode of keeping on/off of a plurality of switching elements to maintain the state where first and second DC power supplies different in amount of voltage change with respect to input/output of the same amount of electric power are connected in series with an electric power line connected to a load, and a voltage controlling mode of controlling an output voltage on the electric power line to be a voltage command value by controlling on/off of the plurality of switching elements. In the voltage controlling mode, between time tx and ta, the sum of voltages of the first and second DC power supplies is matched with the voltage command value by controlling the output voltage by means of charging/discharging between the first and second DC power supplies. After time ta, the series direct connection mode is applied.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: February 20, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masanori Ishigaki, Shuji Tomura, Naoki Yanagizawa, Masaki Okamura
  • Patent number: 9849789
    Abstract: An operation mode selection unit selects an efficiency priority mode for minimizing the overall loss in a power supply system based on a load request voltage obtained in accordance with the condition of a load and on the conditions of DC power supplies, and generates a mode selection signal in accordance with the selection result. When SOC and/or output power have/has reached power supply restriction values in any DC power supply, an operation mode modification unit generates a final mode selection instructing signal so as to modify selection of the efficiency priority mode by the mode selection signal to select an operation mode in which power distribution between the DC power supplies can be controlled.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: December 26, 2017
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shuji Tomura, Masanori Ishigaki, Naoki Yanagizawa, Masaki Okamura
  • Publication number: 20170288547
    Abstract: An electric source control apparatus has: a determining device for determining whether a converter operates in a first mode or a second mode, wherein the first mode prioritizes increase of efficiency of the electric power conversion than the second mode does and the second mode prioritizes suppression of increase of element temperature of the switching element than the first mode does; and a controlling device for controlling the converter so that (i) a switching pattern becomes a first pattern, if the converter operates in the first mode and (ii) the switching pattern becomes a second pattern, if the converter operates in the second mode, wherein the first pattern is capable of increasing the efficiency of the electric power conversion more than the second pattern is and the second pattern is capable of suppressing the increase of the element temperature more than the first pattern is.
    Type: Application
    Filed: July 22, 2015
    Publication date: October 5, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Naoyoshi TAKAMATSU, Masaki OKAMURA, Shuji TOMURA, Masanori ISHIGAKI, Naoki YANAGIZAWA
  • Patent number: 9669727
    Abstract: An electrical source control apparatus controls a vehicle which travels by using an electrical source system including a first electrical source and a second electrical source. The electrical source control apparatus has: a controlling device for controlling the first and second electrical sources to set a residual power level of the first electrical source equal to first target amount and to set a residual power level of the second electrical source equal to second target amount, and a setting device for setting the first and second target amounts such that each of the first and second target amounts becomes smaller as a speed of the vehicle becomes larger. The setting device sets the first and second target amounts such that a rate of change of the second target amount to the speed is larger than a rate of change of the first target amount to the speed.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: June 6, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaki Okamura, Naoyoshi Takamatsu, Takaji Umeno, Shuji Tomura, Masanori Ishigaki, Naoki Yanagizawa
  • Patent number: 9660307
    Abstract: A structure for effectively heating a battery. A battery is housed in a battery container. A condenser is formed such that a heating medium is in direct contact with a surface of the battery container, and condenses the heating medium to heat the battery via the battery container. The heating medium condensed by the condenser is supplied to an evaporator that heats and vaporizes the heating medium. The heating medium vaporized by the evaporator which is in vapor is circulated to the condenser.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: May 23, 2017
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yasuki Hirota, Shuji Tomura, Takaji Umeno, Takashi Shimazu, Takashi Murata
  • Patent number: 9647544
    Abstract: A magnetic component has a core on which windings are wound. The windings are electrically connected in series to constitute a coil of a first reactor. The winding constitutes a coil of a second reactor. The core has a leg portion on which the winding is wound, a leg portion on which the winding is wound, and a leg portion on which the winding is wound. When a current flows through the windings, magnetic fluxes produced from the windings, respectively, and flowing through the winding counteract each other. Furthermore, when a current flows through the winding, induced voltages produced from the windings, respectively, by the magnetic flux produced by the winding counteract each other.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: May 9, 2017
    Assignees: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masanori Ishigaki, Shuji Tomura, Takaji Umeno, Masaki Okamura, Daigo Nobe
  • Publication number: 20170117804
    Abstract: An electrical source system has an electrical power converter which has a plurality of switching elements and performs an electrical power conversion with first and second electricity storage apparatus; and a control apparatus which controls an operation of the electrical power converter, when the electrical power converter performs the electrical power conversion with one electricity storage apparatus, the control apparatus controls the electrical power converter to change a switching state of one of two switching elements while keeping a switching state of the other one of the two switching elements in an ON state, each of two switching elements constitutes predetermined arm element whose switching state should be changed to perform the electrical power conversion with the one electricity storage apparatus.
    Type: Application
    Filed: February 10, 2015
    Publication date: April 27, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Masaya KAJI, Shuji TOMURA, Masanori ISHIGAKI, Naoki YANAGIZAWA
  • Publication number: 20170110975
    Abstract: A DC/DC converter is able to step down a voltage value of a high-voltage battery, and is able to step up a voltage value of a low-voltage battery. The low-voltage battery is a battery that provides a lower voltage value than the high-voltage battery. The DC/DC converter includes a transformer, a third diode and a reactor. The transformer includes a first coil and a second coil. The first coil is connected to the low-voltage battery. The second coil is connected to the high-voltage battery. An anode of the third diode is connected to one end of the first coil. One end of the reactor is connected to a cathode of the third diode, and the other end of the reactor is connected to a positive electrode terminal of the low-voltage battery.
    Type: Application
    Filed: March 13, 2015
    Publication date: April 20, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuji NISHI, Hiromasa TANAKA, Masanori ISHIGAKI, Shuji TOMURA
  • Publication number: 20170077810
    Abstract: A power supply system includes first and second DC power supplies and a power converter having first to fifth semiconductor elements and first and second reactors. The first and fourth semiconductor elements are electrically connected between a first node and a second node, and a first power line, respectively. Second and third switching elements are electrically connected between the first node and the second node, and a second power line, respectively. A fifth switching element is electrically connected between the first node and the second node. The first reactor is electrically connected in series with the first DC power supply, between the first node and the second power line. The second reactor is electrically connected in series with the second DC power supply, between the first power line and the second node.
    Type: Application
    Filed: February 24, 2015
    Publication date: March 16, 2017
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Shigeaki GOTO, Masanori ISHIGAKI, Shuji TOMURA, Takahide SUGIYAMA, Takaji UMENO, Masaki OKAMURA, Naoyoshi TAKAMATSU
  • Publication number: 20170047622
    Abstract: A battery system according includes a secondary battery, a temperature sensor and a controller. The secondary battery includes a power generation element configured to perform charging and discharging, an electrolyte, and a battery case. The electrolyte is impregnated inside the power generation element. The power generation element and the electrolyte is housed in the battery case. The temperature sensor is configured to specify a temperature of the secondary battery. The controller is configured to calculate a deviation in salt concentration in the electrolyte. The controller is configured to calculate a first flow velocity and a second flow velocity at each position in the power generation element in the flow direction of the electrolyte using an equation defining a flow of the electrolyte. The first flow velocity is a flow velocity when the electrolyte flows from an inside of the power generation element toward an outside of the power generation element.
    Type: Application
    Filed: April 16, 2015
    Publication date: February 16, 2017
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroki TASHIRO, Junko AMANO, Hideaki OKA, Shuji TOMURA