Patents by Inventor Shunichi Matsushita

Shunichi Matsushita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240004118
    Abstract: An irradiation probe system, includes: an irradiation probe having a core and first cladding surrounding the core; at least one light source; and a coupling portion that couples light output by the at least one light source, to at least one of the core and the first cladding, wherein the core includes a first input end portion at one end of an axis of the core, and an output end portion that is at the other end of the axis, and the first cladding includes: a second input end portion at one end of the axis; and a leakage portion that is provided at a position separate from the second input end portion and leaks, radially outward, light transmitted inside the first cladding, from an outer peripheral surface of the first cladding.
    Type: Application
    Filed: September 19, 2023
    Publication date: January 4, 2024
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masaki IWAMA, Yutaka NOMURA, Shunichi MATSUSHITA
  • Patent number: 11553964
    Abstract: An optical probe includes: an optical fiber; a reflecting portion; and a traveling direction changing portion changing a traveling direction of a laser beam of a first wavelength that has transmitted through the reflecting portion to a direction different from a traveling direction before transmitting through the reflecting portion. Further, the traveling direction changing portion is configured by a bending structure having a structure in which a portion on a distal end side of the optical fiber is bent, and the reflecting portion is provided closer to a proximal end side of the optical fiber than the bending structure.
    Type: Grant
    Filed: March 3, 2021
    Date of Patent: January 17, 2023
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshiki Nomura, Kengo Watanabe, Shunichi Matsushita
  • Publication number: 20220381992
    Abstract: An optical fiber connection state determination system determines a state of connection between a first optical fiber configured to propagate a test light input from a light source and a second optical fiber in a connector configured to detachably connect an output side from which the test light is output in the first optical fiber and an input side of the second optical fiber to which the test light propagated by the first optical fiber and output from the first optical fiber is input, and includes: a measurement unit configured to measure an intensity of a reflected light reflected and propagating thorough the first optical fiber in the test light; and a determination unit configured to determine the state of connection between the first optical fiber and the second optical fiber in the connector based on the intensity measured by the measurement unit.
    Type: Application
    Filed: August 11, 2022
    Publication date: December 1, 2022
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshiki NOMURA, Ryo KAWAHARA, Kyosuke YAMAUCHI, Shunichi MATSUSHITA, Kengo WATANABE
  • Publication number: 20220249865
    Abstract: A pulse application method includes: setting a wavelength of light within a range in which a temperature rise width of collagen fibers in living tissue when the light is applied to the living tissue is larger than a temperature rise width of water containing cells that are contained in the living tissue and that are present around the collagen fibers; and applying a pulse of light with the set wavelength to the living tissue to heat the living tissue.
    Type: Application
    Filed: April 28, 2022
    Publication date: August 11, 2022
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Emiyu OGAWA, Tsunenori ARAI, Shunichi MATSUSHITA, Kazutaka NARA, Kyosuke YAMAUCHI
  • Patent number: 11287574
    Abstract: An irradiation spot of the laser beam having a large power density can be formed by a condensing apparatus which combines a plurality of laser lights without using a power combiner. The condensing apparatus comprises an optical fiber bundle formed of a plurality of optical fibers. One end of the optical fiber bundle forms an incident side bundle end, while the other end forms an emission side bundle end. The optical fiber bundle includes, at the emission side bundle end, an optical deflection unit that deflects at least two light beams emitted from respective light emission ends of at least two optical fibers toward different directions, respectively, such that the at least two light beams overlap each other on at least one cross section at rear on an optical path of the emission side bundle end and are then scattered.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 29, 2022
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masaki Iwama, Shunichi Matsushita
  • Publication number: 20220006266
    Abstract: A laser apparatus includes: one or more laser diodes and two or more optical combiners. Further, output sides of the one or more laser diodes are connected to an input side of one optical combiner among the two or more optical combiners, and an output side of the one optical combiner is connected to an input side of an optical combiner other than the one optical combiner.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshiki NOMURA, Shunichi MATSUSHITA
  • Publication number: 20220003634
    Abstract: An optical fiber state detection system includes: a first light source that outputs a monitor-related light for monitoring a state of an optical fiber; a reflection mechanism that reflects the monitor-related light propagated through the optical fiber; a light receiving part that receives a reflected light reflected by the reflection mechanism; a tap coupler provided between the reflection mechanism and both the first light source and the light receiving part such that the first light source and the light receiving part are connected the tap coupler; and a control part. Further, when the control part detects that a received optical power of the reflected light is greater than 0 and lower than a predetermined threshold value, the control part outputs information on a decrease in the received optical power to outside.
    Type: Application
    Filed: September 17, 2021
    Publication date: January 6, 2022
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshiki NOMURA, Kengo WATANABE, Shunichi MATSUSHITA
  • Patent number: 11050211
    Abstract: A pulsed laser device includes a laser light source, an electro-optic modulator, a laser light source driver, an electro-optic modulator driver, and a controller to control the laser light source driver and the electro-optic modulator driver. The laser light source outputs pulsed laser light pulse-modulated by the laser light source driver. The electro-optic modulator outputs pulsed laser light obtained by causing the electro-optic modulator driver to pulse-modulate the pulsed laser light from the laser light source. The control unit controls the laser light source driver and the electro-optic modulator driver such that the electro-optic modulator turns on at least while the laser light source is on and the electro-optic modulator turns on at least once while the laser light source is off, thereby increasing a duty ratio of the pulse modulation for the electro-optic modulator relative to a duty ratio of the pulse modulation for the laser light source.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: June 29, 2021
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Ryo Kawahara, Shunichi Matsushita
  • Publication number: 20210186612
    Abstract: To provide an optical probe capable of changing a traveling direction of an output beam to a sideward direction. The optical probe includes an optical fiber that outputs a beam from a distal end thereof, and a traveling direction changing unit that changes a traveling direction of the output beam to a sideward direction with respect to the optical fiber. The optical probe includes a holder member that is mounted on a distal end side of the optical fiber and holds the optical fiber, and the traveling direction changing unit may be a reflector that is arranged on the holder member and that reflects output beam.
    Type: Application
    Filed: March 9, 2021
    Publication date: June 24, 2021
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kengo WATANABE, Shunichi MATSUSHITA, Yoshiki NOMURA, Shigehiro TAKASAKA, Masaki IWAMA
  • Publication number: 20210177516
    Abstract: An optical probe includes: an optical fiber; a reflecting portion; and a traveling direction changing portion changing a traveling direction of a laser beam of a first wavelength that has transmitted through the reflecting portion to a direction different from a traveling direction before transmitting through the reflecting portion. Further, the traveling direction changing portion is configured by a bending structure having a structure in which a portion on a distal end side of the optical fiber is bent, and the reflecting portion is provided closer to a proximal end side of the optical fiber than the bending structure.
    Type: Application
    Filed: March 3, 2021
    Publication date: June 17, 2021
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshiki NOMURA, Kengo WATANABE, Shunichi MATSUSHITA
  • Patent number: 11036024
    Abstract: A method for manufacturing an intermittent bonding type optical fiber ribbon which is capable of forming non-connection portions and intermittent connection portions between adjacent coated optical fibers formed into an optical fiber ribbon by performing a laser processing for the ribbon through irradiation with a pulse laser light, thereby making it possible to rapidly form the intermittent connection portions and the non-connection portions while maintaining high linear velocity of the coated optical fiber. The non-connection portions and the intermittent connection portions are formed in the obtained intermittent bonding type optical fiber ribbon through the irradiation with the pulse laser light, so the intermittent bonding type optical fiber ribbon becomes the intermittent bonding type optical fiber ribbon, which is capable of securing operability during collective connection and surely being subjected to an intermediate branching without damaging cable characteristics during high density mounting.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: June 15, 2021
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Hiroki Tanaka, Kenji Yokomizo, Tomohiro Ishimura, Yutaka Hoshino, Masaki Iwama, Eisuke Otani, Shunichi Matsushita, Yoshihiro Arashitani, Takeshi Yagi
  • Publication number: 20210068899
    Abstract: A detection system includes: at least one light source that outputs a plurality of test beams input to a proximal end portion side of an optical fiber and having different wavelengths and providing different bending losses of the optical fiber; at least one reflector that reflects each of the test beams propagating through the optical fiber, on a distal end portion side of the optical fiber; a plurality of light receiving units that receive a plurality of reflected beams each being a beam reflected by the at least one reflector, on the proximal end portion side; and a determination unit that, based on information about the reflected beams at the plurality of light receiving units, compares the information about the reflected beams with reference set values.
    Type: Application
    Filed: November 17, 2020
    Publication date: March 11, 2021
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshiki NOMURA, Shunichi MATSUSHITA
  • Publication number: 20200408992
    Abstract: An irradiation spot of the laser beam having a large power density can be formed by a condensing apparatus which combines a plurality of laser lights without using a power combiner. The condensing apparatus comprises an optical fiber bundle formed of a plurality of optical fibers. One end of the optical fiber bundle forms an incident side bundle end, while the other end forms an emission side bundle end. The optical fiber bundle includes, at the emission side bundle end, an optical deflection unit that deflects at least two light beams emitted from respective light emission ends of at least two optical fibers toward different directions, respectively, such that the at least two light beams overlap each other on at least one cross section at rear on an optical path of the emission side bundle end and are then scattered.
    Type: Application
    Filed: September 11, 2020
    Publication date: December 31, 2020
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Masaki IWAMA, Shunichi MATSUSHITA
  • Publication number: 20190288479
    Abstract: A pulsed laser device includes a laser light source, an electro-optic modulator, a laser light source driver, an electro-optic modulator driver, and a controller to control the laser light source driver and the electro-optic modulator driver. The laser light source outputs pulsed laser light pulse-modulated by the laser light source driver. The electro-optic modulator outputs pulsed laser light obtained by causing the electro-optic modulator driver to pulse-modulate the pulsed laser light from the laser light source. The control unit controls the laser light source driver and the electro-optic modulator driver such that the electro-optic modulator turns on at least while the laser light source is on and the electro-optic modulator turns on at least once while the laser light source is off, thereby increasing a duty ratio of the pulse modulation for the electro-optic modulator relative to a duty ratio of the pulse modulation for the laser light source.
    Type: Application
    Filed: June 6, 2019
    Publication date: September 19, 2019
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Ryo KAWAHARA, Shunichi Matsushita
  • Publication number: 20190285823
    Abstract: A method for manufacturing an intermittent bonding type optical fiber ribbon which is capable of forming non-connection portions and intermittent connection portions between adjacent coated optical fibers formed into an optical fiber ribbon by performing a laser processing for the ribbon through irradiation with a pulse laser light, thereby making it possible to rapidly form the intermittent connection portions and the non-connection portions while maintaining high linear velocity of the coated optical fiber. The non-connection portions and the intermittent connection portions are formed in the obtained intermittent bonding type optical fiber ribbon through the irradiation with the pulse laser light, so the intermittent bonding type optical fiber ribbon becomes the intermittent bonding type optical fiber ribbon, which is capable of securing operability during collective connection and surely being subjected to an intermediate branching without damaging cable characteristics during high density mounting.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Hiroki TANAKA, Kenji YOKOMIZO, Tomohiro ISHIMURA, Yutaka HOSHINO, Masaki IWAMA, Eisuke OTANI, Shunichi MATSUSHITA, Yoshihiro ARASHITANI, Takeshi YAGI
  • Publication number: 20190166701
    Abstract: The present disclosure provides a laser processing method of performing surface processing on a copper surface by using laser. The method forms a periodic structure on the order of laser wavelength on a copper surface by irradiating the copper surface with pulse laser having a laser power close to a threshold beyond which processing of copper foil is possible and having a pulse width on the order of nanoseconds, and forms a coating on the copper surface. in this manner, the copper surface can be processed to have a favorable electric characteristic and desirable adhesion with a resin material.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 30, 2019
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Masaki Iwami, Shunichi Matsushita
  • Patent number: 8275010
    Abstract: The pulse light source according to the present invention comprises: a seed pulse generator 1 for outputting an input pulse 10 as a seed pulse; a pulse amplifier 2; and a dispersion compensator 3 for dispersion compensating a light pulse output from the pulse amplifier 2. Moreover, the pulse amplifier 2 comprises a normal dispersion medium (DCF 4) and an amplification medium (EDF 5) that are multistage-connected alternately, for changing the input pulse 10 to a light pulse having a linear chirp and outputting the light pulse. Furthermore, an absolute value of the dispersion of the DCF 4 becomes to be larger than the absolute value of the dispersion of the EDF 5.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: September 25, 2012
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Oguri, Shunichi Matsushita
  • Publication number: 20120027343
    Abstract: An optical regeneration system for regenerating a degenerated signal light, comprising a regeneration device having at least one of a soliton converter, a pulse roller, a Kerr-shutter and a soliton purifier. The solilton converter uses an anomalaous-dispersion fiber (ADF) having a fiber length up to three times the soliton frequency, and the pulse roller is provided with a pulse roller fiber having high non-linear characteristics. The Kerr-shutter comprises an optical LO (local oscillation) generator for generating an optical LO on an OPLL (optical phase locked loop), a phase comparator for detecting the phase difference between an externally-input signal light and an optical LO, and a control unit for regulating the repeated frequency of an optical LO based on the phase difference. The soliton purifier has a soliton fiber disposed between two optical fibers.
    Type: Application
    Filed: October 10, 2011
    Publication date: February 2, 2012
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Koji IGARASHI, Shunichi Matsushita, Shu Namiki, Shigehiro Takasaka, Takashi Inoue, Hideaki Tobioka, Jiro Hiroishi
  • Patent number: 8059966
    Abstract: An optical regeneration system for regenerating a degenerated signal light, comprising a regeneration device having at least one of a soliton converter, a pulse roller, a Kerr-shutter and a soliton purifier. The solilton converter uses an anomalous-dispersion fiber (ADF) having a fiber length up to three times the soliton frequency, and the pulse roller is provided with a pulse roller fiber having high non-linear characteristics. The Kerr-shutter comprises an optical LO (local oscillation) generator for generating an optical LO on an OPLL (optical phase locked loop), a phase comparator for detecting the phase difference between an externally-input signal light and an optical LO, and a control unit for regulating the repeated frequency of an optical LO based on the phase difference. The soliton purifier has a soliton fiber disposed between two optical fibers.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: November 15, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Koji Igarashi, Shunichi Matsushita, Shu Namiki, Shigehiro Takasaka, Takashi Inoue, Hideaki Tobioka, Jiro Hiroishi
  • Patent number: 7769262
    Abstract: Provided is an ultra-short pulse light source having an optical pulse generator 111 for emitting short pulse light, an optical amplifier 112 for amplifying the short pulse light output from the optical pulse generator 111 and an optical compressor 120 for compressing the short pulse light. The optical compressor 120 has multi-step configuration of steps polarization beam splitters 1211,2, optical fibers 1221,2,1231,2 for compressing the incident pulse light, polarization rotating element 1241,2, for rotating the polarization direction of the incident light by 90 degrees to return the light to the optical fibers 1231,2, polarization maintaining optical fibers 1251,2 provided to the output side of the polarization beam splitters 1211,2, and a polarization maintaining optical fiber 1251 at the front step is connected to a polarization maintaining optical fiber 1252 at the rear step.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: August 3, 2010
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Atsushi Oguri, Shunichi Matsushita