Patents by Inventor Sihong Chen

Sihong Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210049397
    Abstract: A semantic segmentation method and apparatus for a three-dimensional image, and a storage medium are provided. The method includes: obtaining a three-dimensional image; slicing the three-dimensional image according to three directional planes, to obtain two-dimensional slice images of an x axis, two-dimensional slice images of a y axis, and two-dimensional slice images of a z axis; invoking a first segmentation model, a second segmentation model, and a third segmentation model to respectively perform semantic segmentation on the two-dimensional slice images of the x axis, the y axis, and the z axis, to obtain distribution probability maps of a target object on the three directional planes; and obtaining a three-dimensional distribution binary image of the target object by invoking an adaptive fusion model to perform three-dimensional fusion on the three distribution probability maps respectively corresponding to an x-axis directional plane, a y-axis directional plane, and a z-axis directional plane.
    Type: Application
    Filed: October 20, 2020
    Publication date: February 18, 2021
    Inventor: Sihong CHEN
  • Patent number: 10921191
    Abstract: An atomic sensing method, the method including providing a polarization converter; emitting a linearly polarized polychromatic laser beam to the polarization converter; converting, by the polarization converter, the linearly polarized polychromatic laser beam into a circularly-polarized laser beam and a linearly-polarized laser beam; combining the circularly-polarized laser beam and the linearly-polarized laser beam thereby yielding a multi-polarization polychromatic laser beam; transmitting the multi-polarization polychromatic laser beam to an atomic vapor cell comprising alkali metal atoms, polarizing the multi-polarization polychromatic laser beam into two laser beams, and detecting the two laser beams by two photodetectors, respectively.
    Type: Grant
    Filed: February 23, 2020
    Date of Patent: February 16, 2021
    Assignee: WUHAN INSTITUTE OF PHYSICS AND MATHEMATICS, CHINESE ACADEMY OF SCIENCE
    Inventors: Yi Zhang, Sihong Gu, Yuan Tian, Jiehua Chen
  • Publication number: 20210019890
    Abstract: An image segmentation method is provided for a computer device. The method includes obtaining a plurality of sample images, calling an initial model to input the plurality of sample images into the initial model and to train the initial model based on the plurality of sample images to obtain an image segmentation model and, based on the initial model, determining a number of image segmentation modules according to a number of types of pixels of the plurality of sample images. Different image segmentation modules are used for segmenting different regions of an image. The method also includes calling the image segmentation model in response to obtaining a first image to be segmented, and segmenting the first image by using the image segmentation model based on a plurality of image segmentation modules, to output a second image. Computer device and non-transitory computer-readable storage medium counterparts are also contemplated.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 21, 2021
    Inventor: Sihong CHEN
  • Publication number: 20200399633
    Abstract: The present disclosure describes oligonucleotide-tethered nucleotides, methods of making them, and methods of using them. The oligonucleotide-tethered nucleotides comprise, in some embodiments, a nucleotide linked to an oligonucleotide of from about 3 to about 100 nucleotides in length. These oligonucleotide-tethered nucleotides can be used to label a plurality of different types of nucleic acids in a plurality of different situations with a known oligonucleotide, which can serve as a barcode in some embodiments. The resulting oligonucleotide-labeled nucleic acids oligonucleotides can be used in a variety of nucleic acid sequencing methods.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 24, 2020
    Inventors: Arvydas LUBYS, Inga CIKOTIENE, Zana KAPUSTINA, Arturas BEREZNIAKOVAS, Justina MEDZIUNE, Simona ZEIMYTE, Mark ANDERSEN, Michael ALLEN, Sihong CHEN
  • Publication number: 20200385786
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.
    Type: Application
    Filed: August 14, 2020
    Publication date: December 10, 2020
    Inventors: Daniel MAZUR, Eileen TOZER, Sihong CHEN, Peter VANDER HORN, Tommie LINCECUM
  • Publication number: 20200271523
    Abstract: An atomic sensing method, the method including providing a polarization converter; emitting a linearly polarized polychromatic laser beam to the polarization converter; converting, by the polarization converter, the linearly polarized polychromatic laser beam into a circularly-polarized laser beam and a linearly-polarized laser beam; combining the circularly-polarized laser beam and the linearly-polarized laser beam thereby yielding a multi-polarization polychromatic laser beam; transmitting the multi-polarization polychromatic laser beam to an atomic vapor cell comprising alkali metal atoms, polarizing the multi-polarization polychromatic laser beam into two laser beams, and detecting the two laser beams by two photodetectors, respectively.
    Type: Application
    Filed: February 23, 2020
    Publication date: August 27, 2020
    Inventors: Yi ZHANG, Sihong GU, Yuan TIAN, Jiehua CHEN
  • Patent number: 10745747
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 18, 2020
    Assignee: Life Technologies Corporation
    Inventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum
  • Publication number: 20190270974
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Application
    Filed: May 17, 2019
    Publication date: September 5, 2019
    Inventors: Daniel MAZUR, Peter VANDER HORN, Eileen TOZER, Sihong CHEN, Guobin LUO, Joshua SHIRLEY, Kevin HEINEMANN
  • Patent number: 10344268
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: July 9, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Daniel Mazur, Peter Vander Horn, Eileen Tozer, Sihong Chen, Guobin Luo, Joshua Shirley, Kevin Heinemann
  • Publication number: 20180312904
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a referenceTaq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.
    Type: Application
    Filed: April 24, 2018
    Publication date: November 1, 2018
    Inventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum
  • Patent number: 9976178
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a reference Taq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: May 22, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum
  • Publication number: 20170096648
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, recombinant polymerases and biologically active fragments thereof are provided that allow for nucleic acid amplification. In some aspects, the disclosure provides recombinant polymerases that yield lower systematic error rates and/or improved accuracy, when used in sequencing by synthesis reactions as compared to a control polymerase. In one aspect, the disclosure relates to recombinant polymerases useful for nucleic acid sequencing, genotyping, copy number variation analysis, paired-end sequencing and other forms of genetic analysis. In another aspect, the recombinant polymerases are useful for the amplification of nucleic acid templates during PCR, emPCR, isothermal amplification, recombinase polymerase amplification, rolling circle amplification, strand displacement amplification and proximity ligation amplification.
    Type: Application
    Filed: September 27, 2016
    Publication date: April 6, 2017
    Inventors: DANIEL MAZUR, Peter VANDER HORN, Eileen TOZER, Sihong CHEN, Guobin LUO, Joshua SHIRLEY, Kevin HEINEMANN
  • Publication number: 20160177373
    Abstract: The present disclosure provides compositions, methods, kits, systems and apparatus that are useful for nucleic acid polymerization. In particular, modified polymerases and biologically active fragments thereof, such as modified Taq polymerases, are provided that allow for improved nucleic acid amplification. In some aspects, the disclosure provides modified polymerases having improved thermostability, accuracy, processivity and/or read length as compared to a reference Taq polymerase. In some aspects, the disclosure relates to modified polymerases or biologically active fragments thereof, useful for amplification methods, and in practically illustrative embodiments, emulsion PCR.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 23, 2016
    Inventors: Daniel Mazur, Eileen Tozer, Sihong Chen, Peter Vander Horn, Tommie Lincecum