Patents by Inventor Simon Kozlov

Simon Kozlov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200334802
    Abstract: One variation of a method for predicting manufacturing defects includes: accessing a first set of inspection images of a first set of assembly units recorded by an optical inspection station over a first period of time; generating a first set of vectors representing features extracted from the first set of inspection images; grouping neighboring vectors in a multi-dimensional feature space into a set of vector groups; accessing a second inspection image of a second assembly recorded by the optical inspection station at a second time succeeding the first period of time; detecting a second set of features in the second inspection image; generating a second vector representing the second set of features in the multi-dimensional feature space; and, in response to the second vector deviating from the set of vector groups by more than a threshold difference, flagging the second assembly unit.
    Type: Application
    Filed: June 9, 2020
    Publication date: October 22, 2020
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Ana Ulin, Mikhail Okunev, Isaac Sukin
  • Patent number: 10789701
    Abstract: One variation of a method for predicting manufacturing defects includes: accessing a set of inspection images of a set of assembly units recorded by an optical inspection station; for each inspection image in the set of inspection images, detecting a set of features in the inspection image and generating a vector representing the set of features in a multi-dimensional feature space; grouping neighboring vectors in the multi-dimensional feature space into a set of vector groups; and, in response to receipt of a first inspection result indicting a defect in a first assembly unit, in the set of assembly units, associated with a first vector in a first vector group, in the set of vector groups, labeling the first vector group with the defect and flagging a second assembly unit associated with a second vector, in the first vector group, as exhibiting characteristics of the defect.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: September 29, 2020
    Assignee: Instrumental, Inc.
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Ana Ulin, Mikhail Okunev, Isaac Sukin
  • Publication number: 20200233999
    Abstract: The present disclosure is directed toward systems and methods that efficiently and effectively generate an enhanced document image of a displayed document in an image frame captured from a live image feed. For example, systems and methods described herein apply a document enhancement process to a displayed document in an image frame that result in an enhanced document image that is cropped, rectified, un-shadowed, and with dark text against a mostly white background. Additionally, systems and method described herein determine whether a stored digital content item includes a displayed document. In response to determining that a stored digital content item does include a displayed document, systems and methods described herein generate an enhanced document image of a displayed document included in the stored digital content item.
    Type: Application
    Filed: March 25, 2020
    Publication date: July 23, 2020
    Inventors: Nils Peter Welinder, Peter N. Belhumeur, Ying Xiong, Jongmin Baek, Simon Kozlov, Thomas Berg, David J. Kriegman
  • Publication number: 20200226319
    Abstract: The present disclosure is directed toward systems and methods that efficiently and effectively generate an enhanced document image of a displayed document in an image frame captured from a live image feed. For example, systems and methods described herein apply a document enhancement process to a displayed document in an image frame that result in an enhanced document image that is cropped, rectified, un-shadowed, and with dark text against a mostly white background. Additionally, systems and method described herein determine whether a stored digital content item includes a displayed document. In response to determining that a stored digital content item does include a displayed document, systems and methods described herein generate an enhanced document image of a displayed document included in the stored digital content item.
    Type: Application
    Filed: March 25, 2020
    Publication date: July 16, 2020
    Inventors: Nils Peter Welinder, Peter N. Belhumeur, Ying Xiong, Jongmin Baek, Simon Kozlov, Thomas Berg, David J. Kriegman
  • Patent number: 10713776
    Abstract: One variation of a method for predicting manufacturing defects includes: accessing a first set of inspection images of a first set of assembly units recorded by an optical inspection station over a first period of time; generating a first set of vectors representing features extracted from the first set of inspection images; grouping neighboring vectors in a multi-dimensional feature space into a set of vector groups; accessing a second inspection image of a second assembly recorded by the optical inspection station at a second time succeeding the first period of time; detecting a second set of features in the second inspection image; generating a second vector representing the second set of features in the multi-dimensional feature space; and, in response to the second vector deviating from the set of vector groups by more than a threshold difference, flagging the second assembly unit.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: July 14, 2020
    Assignee: Instrumental, Inc.
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Ana Ulin, Mikhail Okunev, Isaac Sukin
  • Patent number: 10628519
    Abstract: Systems and methods that efficiently and effectively generate an enhanced document image of a displayed document in an image frame captured from a live image feed are disclosed. For example, systems and methods described herein apply a document enhancement process to a displayed document in an image frame that result in an enhanced document image that is cropped, rectified, un-shadowed, and with dark text against a mostly white background. Additionally, systems and method described herein determine whether a stored digital content item includes a displayed document. In response to determining that a stored digital content item does include a displayed document, systems and methods described herein generate an enhanced document image of a displayed document included in the stored digital content item.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: April 21, 2020
    Assignee: Dropbox, Inc.
    Inventors: Nils Peter Welinder, Peter N. Belhumeur, Ying Xiong, Jongmin Baek, Simon Kozlov, Thomas Berg, David J. Kriegman
  • Publication number: 20200013156
    Abstract: One variation of a method for monitoring manufacture of assembly units includes: receiving selection of a target location hypothesized by a user to contain an origin of a defect in assembly units of an assembly type; accessing a feature map linking non-visual manufacturing features to physical locations within the assembly type; for each assembly unit, accessing an inspection image of the assembly unit recorded by an optical inspection station during production of the assembly unit, projecting the target location onto the inspection image, detecting visual features proximal the target location within the inspection image, and aggregating non-visual manufacturing features associated with locations proximal the target location and representing manufacturing inputs into the assembly unit based on the feature map; and calculating correlations between visual and non-visual manufacturing features associated with locations proximal the target location and the defect for the set of assembly units.
    Type: Application
    Filed: July 9, 2019
    Publication date: January 9, 2020
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Tilmann Bruckhaus, Shilpi Kumar, Isaac Sukin, Ian Theilacker, Brendan Green
  • Publication number: 20190325013
    Abstract: The present disclosure is directed toward systems and methods to quickly and accurately identify boundaries of a displayed document in a live camera image feed, and provide a document boundary indicator within the live camera image feed. For example, systems and methods described herein utilize different display document detection processes in parallel to generate and provide a document boundary indicator that accurately corresponds with a displayed document within a live camera image feed. Thus, a user of the mobile computing device can easily see whether the document identification system has correctly identified the displayed document within the camera viewfinder feed.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Nils Peter Welinder, Peter N. Belhumeur, Ying Xiong, Jongmin Baek, Simon Kozlov, Thomas Berg, David J. Kriegman
  • Patent number: 10417321
    Abstract: The present disclosure is directed toward systems and methods to quickly and accurately identify boundaries of a displayed document in a live camera image feed, and provide a document boundary indicator within the live camera image feed. For example, systems and methods described herein utilize different display document detection processes in parallel to generate and provide a document boundary indicator that accurately corresponds with a displayed document within a live camera image feed. Thus, a user of the mobile computing device can easily see whether the document identification system has correctly identified the displayed document within the camera viewfinder feed.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: September 17, 2019
    Assignee: DROPBOX, INC.
    Inventors: Nils Peter Welinder, Peter N. Belhumeur, Ying Xiong, Jongmin Baek, Simon Kozlov, Thomas Berg, David J. Kriegman
  • Publication number: 20190259141
    Abstract: A method includes: displaying a first image of a first assembly unit within a user interface; locating a first virtual origin at a first feature on the first assembly unit; displaying a first subregion of the first image within the user interface responsive to a change in a view window of the first image; recording a geometry and a position of the first subregion relative to the first virtual origin; locating a second virtual origin at a second feature—analogous to the first feature—on a second assembly unit represented in the second image; projecting the geometry and the position of the first subregion onto the second image according to the second virtual origin to define a second subregion of the second image; and, in response to receipt of a command to advance from the first image to the second image, displaying the second subregion within the user interface.
    Type: Application
    Filed: May 6, 2019
    Publication date: August 22, 2019
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, John James Shedletsky, III, Isaac Sukin, Simon Kozlov
  • Patent number: 10325363
    Abstract: A method includes: displaying a first image of a first assembly unit within a user interface; locating a first virtual origin at a first feature on the first assembly unit; displaying a first subregion of the first image within the user interface responsive to a change in a view window of the first image; recording a geometry and a position of the first subregion relative to the first virtual origin; locating a second virtual origin at a second feature—analogous to the first feature—on a second assembly unit represented in the second image; projecting the geometry and the position of the first subregion onto the second image according to the second virtual origin to define a second subregion of the second image; and, in response to receipt of a command to advance from the first image to the second image, displaying the second subregion within the user interface.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: June 18, 2019
    Assignee: Instrumental, Inc.
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, John James Shedletsky, III, Isaac Sukin, Simon Kozlov
  • Publication number: 20190114756
    Abstract: One variation of a method for predicting manufacturing defects includes: accessing a first set of inspection images of a first set of assembly units recorded by an optical inspection station over a first period of time; generating a first set of vectors representing features extracted from the first set of inspection images; grouping neighboring vectors in a multi-dimensional feature space into a set of vector groups; accessing a second inspection image of a second assembly recorded by the optical inspection station at a second time succeeding the first period of time; detecting a second set of features in the second inspection image; generating a second vector representing the second set of features in the multi-dimensional feature space; and, in response to the second vector deviating from the set of vector groups by more than a threshold difference, flagging the second assembly unit.
    Type: Application
    Filed: April 13, 2018
    Publication date: April 18, 2019
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Ana Ulin, Mikhail Okunev, Isaac Sukin
  • Patent number: 10198808
    Abstract: One variation of a method for automatically generating a common measurement across multiple assembly units includes: displaying a first image—recorded at an optical inspection station—within a user interface; receiving manual selection of a particular feature in a first assembly unit represented in the first image; receiving selection of a measurement type for the particular feature; extracting a first real dimension of the particular feature in the first assembly unit from the first image according to the measurement type; for each image in a set of images, identifying a feature—analogous to the particular feature—in an assembly unit represented in the image and extracting a real dimension of the feature in the assembly unit from the image according to the measurement type; and aggregating the first real dimension and a set of real dimensions extracted from the set of images into a digital container.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: February 5, 2019
    Assignee: Instrumental, Inc.
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, John James Shedletsky, III, Isaac Sukin, Simon Kozlov
  • Publication number: 20180300865
    Abstract: One variation of a method for predicting manufacturing defects includes: accessing a set of inspection images of a set of assembly units recorded by an optical inspection station; for each inspection image in the set of inspection images, detecting a set of features in the inspection image and generating a vector representing the set of features in a multi-dimensional feature space; grouping neighboring vectors in the multi-dimensional feature space into a set of vector groups; and, in response to receipt of a first inspection result indicting a defect in a first assembly unit, in the set of assembly units, associated with a first vector in a first vector group, in the set of vector groups, labeling the first vector group with the defect and flagging a second assembly unit associated with a second vector, in the first vector group, as exhibiting characteristics of the defect.
    Type: Application
    Filed: April 13, 2018
    Publication date: October 18, 2018
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, Simon Kozlov, Ana Ulin, Mikhail Okunev, Isaac Sukin
  • Publication number: 20180025251
    Abstract: The present disclosure is directed toward systems and methods to quickly and accurately identify boundaries of a displayed document in a live camera image feed, and provide a document boundary indicator within the live camera image feed. For example, systems and methods described herein utilize different display document detection processes in parallel to generate and provide a document boundary indicator that accurately corresponds with a displayed document within a live camera image feed. Thus, a user of the mobile computing device can easily see whether the document identification system has correctly identified the displayed document within the camera viewfinder feed.
    Type: Application
    Filed: July 24, 2017
    Publication date: January 25, 2018
    Inventors: Nils Peter Welinder, Peter N. Belhumeur, Ying Xiong, Jongmin Baek, Simon Kozlov, Thomas Berg, David J. Kriegman
  • Publication number: 20180024974
    Abstract: The present disclosure is directed toward systems and methods that efficiently and effectively generate an enhanced document image of a displayed document in an image frame captured from a live image feed. For example, systems and methods described herein apply a document enhancement process to a displayed document in an image frame that result in an enhanced document image that is cropped, rectified, un-shadowed, and with dark text against a mostly white background. Additionally, systems and method described herein determine whether a stored digital content item includes a displayed document. In response to determining that a stored digital content item does include a displayed document, systems and methods described herein generate an enhanced document image of a displayed document included in the stored digital content item.
    Type: Application
    Filed: July 24, 2017
    Publication date: January 25, 2018
    Inventors: Nils Peter Welinder, Peter N. Belhumeur, Ying Xiong, Jongmin Baek, Simon Kozlov, Thomas Berg, David J. Kriegman
  • Publication number: 20170206643
    Abstract: A method includes: displaying a first image of a first assembly unit within a user interface; locating a first virtual origin at a first feature on the first assembly unit; displaying a first subregion of the first image within the user interface responsive to a change in a view window of the first image; recording a geometry and a position of the first subregion relative to the first virtual origin; locating a second virtual origin at a second feature—analogous to the first feature—on a second assembly unit represented in the second image; projecting the geometry and the position of the first subregion onto the second image according to the second virtual origin to define a second subregion of the second image; and, in response to receipt of a command to advance from the first image to the second image, displaying the second subregion within the user interface.
    Type: Application
    Filed: January 16, 2017
    Publication date: July 20, 2017
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, John James Shedletsky, III, Isaac Sukin, Simon Kozlov
  • Publication number: 20170206428
    Abstract: One variation of a method for automatically generating a common measurement across multiple assembly units includes: displaying a first image—recorded at an optical inspection station—within a user interface; receiving manual selection of a particular feature in a first assembly unit represented in the first image; receiving selection of a measurement type for the particular feature; extracting a first real dimension of the particular feature in the first assembly unit from the first image according to the measurement type; for each image in a set of images, identifying a feature—analogous to the particular feature—in an assembly unit represented in the image and extracting a real dimension of the feature in the assembly unit from the image according to the measurement type; and aggregating the first real dimension and a set of real dimensions extracted from the set of images into a digital container.
    Type: Application
    Filed: January 16, 2017
    Publication date: July 20, 2017
    Inventors: Samuel Bruce Weiss, Anna-Katrina Shedletsky, John James Shedletsky, III, Isaac Sukin, Simon Kozlov