Patents by Inventor Sohajl MOVAHHED

Sohajl MOVAHHED has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11939223
    Abstract: A process for the hydrophobization of a porous silica based compound involves the steps of providing a composition (I) containing a porous silica based compound, treating the composition (I) with a composition (II) containing hexamethyldisiloxane or its hydrolyzed form, and removing the treated silica based compound. The porous silica based compound obtained by the process is useful. A porous silica based compound obtained or obtainable by the process can be used for medical and pharmaceutical applications, as adsorbents, for cosmetic applications, as an additive for food, as a catalyst support, for the preparation of sensors, or for thermal insulation.
    Type: Grant
    Filed: March 24, 2020
    Date of Patent: March 26, 2024
    Assignee: aerogel-it GmbH
    Inventors: Raman Subrahmanyam, Fynn Missfeldt, Pavel Gurikov, Irina Smirnova, Sohajl Movahhed, Wibke Loelsberg, Paul Dieringer
  • Publication number: 20240076439
    Abstract: The present invention relates to composition at least including (A) at least one epoxy-group terminated polyoxazolidinone, derived from at least one polyisocyanate compound and at least one aliphatic polyepoxide compound, (B) at least one compound having at least one group that is reactive towards terminal epoxy-groups, and (C) at least one solvent. The molar ratio of the epoxy groups of the polyepoxide compound to the isocyanate groups of the polyisocyanate compound is 50:1 to 2.4:1. The at least one epoxy-group terminated polyoxazolidinone is present in an amount of 50 to 95% by weight, in respect of the solid content of the composition. The sum of all components in respect of the solid content of the composition adds up to 100% by weight and where the solid content of the composition is at least 35% by weight.
    Type: Application
    Filed: December 6, 2021
    Publication date: March 7, 2024
    Inventors: Irene Cristina Latorre Martinez, Yvonne Reimann, Jan Weikard, Florian Golling, Laura Woods, Christoph Guertler, Aurel Wolf, Kai Laemmerhold, Stefan Westhues, Sohajl Movahhed, Walter Leitner, Charlotte Over, Chicco Manzuna Sapu, Mathias Glassner
  • Publication number: 20240026065
    Abstract: A process for producing a thermoplastic polyoxazolidinone comprising copolymerizing a diisocyanate compound with a bisepoxide compound in the presence of a catalyst, in a solvent, wherein the solvent (E) comprises at least one of a substituted or unsubstituted alkyl nitrile, a substituted or unsubstituted alkenyl nitrile, a substituted or unsubstituted cycloalkyl nitrile, a substituted or unsubstituted aryl nitrile, a substituted or unsubstituted alkylcycloalkyl nitrile, a substituted or unsubstituted alkylaryl nitrile, a substituted or unsubstituted hetercycloalkyl nitrile, a substituted or unsubstituted heteroalkyl nitrile, and a substituted or unsubstituted heteroaryl nitrile, preferably a substituted or unsubstituted aryl nitrile. The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Application
    Filed: November 26, 2021
    Publication date: January 25, 2024
    Inventors: Sohajl Movahhed, Stefan Westhues, Daniel Thiel, Kai Laemmerhold, Aurel Wolf, Christoph Guertler
  • Publication number: 20240010780
    Abstract: A process for producing thermoplastic polyoxazolidinones is provided. The process comprises copolymerization of a diisocyanate compound with a bisepoxide compound in the presence of a catalyst and a compound, wherein the compound is one or more compounds selected from the group consisting of monofunctional isocyanate, monofunctional epoxide, cyclic carbonate, monofunctional alcohol, monofunctional amine preferred monofunctional epoxide, wherein the process is performed at reaction temperatures of ?178° C. to ?230° C., wherein the bisepoxide compound (B) comprises 2,4?-isopropylidenediphenol diglycidyl ether (2,4? BADGE) and 4,4?-isopropylidenediphenol diglycidyl ether (4,4? BADGE); and wherein the molar ratio of 2,4?-isopropylidenediphenol diglycidyl ether (2,4? BADGE) is from ?3 mol-% to ?11 mol-% related to the sum of 2,4?-isopropylidenediphenol diglycidyl ether (2,4? BADGE) and 4,4?-isopropylidenediphenol diglycidyl ether (4,4? BADGE). A resulting thermoplastic polyoxazolidinone is also provided.
    Type: Application
    Filed: March 19, 2021
    Publication date: January 11, 2024
    Inventors: Elena Frick-Delaittre, Stefan Westhues, Aurel Wolf, Carsten Koopmans, Thomas Koenig, Christoph Guertler, Kai Laemmerhold, Daniel Thiel, Sohajl Movahhed
  • Publication number: 20230279175
    Abstract: A process for producing a thermoplastic polyoxazolidinone comprising copolymerization of a diisocyanate compound (A) with a bisepoxide compound (B) in the presence of a specific a quaternary ammonium, quaternary phoshonium and/or quaternary stibonium-based catalyst (C), a compound (D), a compound (F) wherein compound (D) and compound (F) is one or more compounds selected from the group consisting of a monofunctional isocyanate, a monofunctional epoxide, a cyclic carbonate, a monofunctional alcohol, a monofunctional amine optionally in a solvent (E), and wherein bisepoxide compound (B) comprises an epoxy-terminated oxazolidone-based prepolymer. The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Application
    Filed: August 17, 2021
    Publication date: September 7, 2023
    Inventors: Sohajl Movahhed, Stefan Westhues, Daniel Thiel, Kai Laemmerhold, Aurel Wolf, Christoph Guertler
  • Publication number: 20230257512
    Abstract: A process for producing a thermoplastic polyoxazolidinone comprising copolymerizing a diisocyanate compound (A) with a bisepoxide compound (B) in the presence of a specific a quaternary ammonium, quaternary phoshonium and/or quaternary stibonium-based catalyst (C), a compound (D), a compound (F) wherein compound (D) and compound (F) independently comprises at least one of a monofunctional isocyanate, a monofunctional epoxide, a cyclic carbonate, a monofunctional alcohol, a monofunctional amine optionally in a solvent (E), and wherein the process is in the absence of a solvent (G) with a boiling point higher than 200° C., preferably higher than 190° C. and more preferably higher than 180° C. at 1 bar (absolute). The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Application
    Filed: August 17, 2021
    Publication date: August 17, 2023
    Inventors: Sohajl Movahhed, Stefan Westhues, Daniel Thiel, Kai Laemmerhold, Aurel Wolf, Christoph Guertler
  • Publication number: 20230220144
    Abstract: A process for producing a thermoplastic polyoxazolidinone comprising copolymerizing a diisocyanate compound (A) with a bisepoxide compound (B) in the presence of a specific a quaternary ammonium, quaternary phoshonium and/or quaternary stibonium-based catalyst (C), a compound (D), a compound (F) wherein compound (D) and compound (F) independently comprises at least one of a monofunctional isocyanate, a monofunctional epoxide, a cyclic carbonate, a monofunctional alcohol, a monofunctional amine optionally in a solvent (E), and wherein the catalyst (C) is added in at least two portions (C-1) and (C-2). The invention is also related to the resulting thermoplastic polyoxazolidinone.
    Type: Application
    Filed: August 17, 2021
    Publication date: July 13, 2023
    Inventors: Sohajl Movahhed, Stefan Westhues, Daniel Thiel, Kai Laemmerhold, Aurel Wolf, Christoph Guertler
  • Publication number: 20220195137
    Abstract: A molding based on a monolithic organic aerogel has a density in the range from 60 to 300 kg/m3 and a thermal conductivity in the range from 12 to 17.8 mW/m*K. The molding based on a monolithic organic aerogel has more than 30 vol.-% of pores with a diameter of less than 150 nm, and more than 20 vol.-% of pores with a diameter of less than 27 nm, based on the total pore volume. A process can be used to prepare the molding by compression.
    Type: Application
    Filed: April 9, 2020
    Publication date: June 23, 2022
    Applicant: BASF SE
    Inventors: Sohajl MOVAHHED, Marcel Nobis, Marc Fricke, Wibke Loelsberg, Dirk Weinrich
  • Publication number: 20220098384
    Abstract: A process for preparing a porous material involves at least the steps of providing a mixture (I) containing a composition (A), which contains components suitable to from an organic gel, and a solvent (B); reacting the components in the composition (A) in the presence of the solvent (B) to form a gel; and drying of the gel. The composition (A) contains a catalyst system (CS), which contains at least a catalyst component (C1) selected from ammonium salts and phosphonium salts, and an acid with a phosphor containing acid group as a catalyst component (C2). Porous materials can be obtained in this way and the porous materials can be used as thermal insulation material and in vacuum insulation panels and vacuum insulation systems, in particular in interior or exterior thermal insulation systems as well as for insulation of refrigerators and freezers and in water tank or ice maker insulation systems.
    Type: Application
    Filed: January 16, 2020
    Publication date: March 31, 2022
    Applicant: BASF SE
    Inventors: Sohajl Movahhed, Marc Fricke, Wibke Loelsberg, Dirk Weinrich, Marcel Nobis
  • Publication number: 20220041817
    Abstract: Processes for drying gel particles, in particular for producing aerogels, involve providing a suspension containing gel particles and a solvent, introducing the suspension into a column where carbon dioxide flows in countercurrent, and removing dried aerogel particles from the column. The suspension is introduced in the top region of the column and dried aerogel particles are removed in the lower region. Pressure and temperature in the column are set such that the mixture of carbon dioxide and solvent is virtually supercritical or is supercritical. The aerogel particles can be discharged via discharge vessels or continuous decompression. Aerogel particles can be obtained by such a process and the aerogel particles can be used for medical and pharmaceutical applications, as additive or carrier material for additives for foods, as catalyst support, for cosmetic, hygiene, washing and cleaning applications, for production of sensors, for thermal insulation, or as a core material for VIPs.
    Type: Application
    Filed: September 12, 2019
    Publication date: February 10, 2022
    Applicant: BASF SE
    Inventors: Sohajl Movahhed, Wibke Loelsberg, Dirk Weinrich, Marc Fricke, Raman Subrahmanyam, lrina Smirnova, Pavel Gurikov, Fynn Missfeldt
  • Publication number: 20210139633
    Abstract: The present invention relates to a process for preparing a porous material, at least comprising the steps of providing a mixture (I) comprising a composition (A) comprising components suitable to form an organic gel and a solvent (B), reacting the components in the composition (A) in the presence of the solvent (B) to form a gel, and drying of the gel obtained in step b), wherein the composition (A) comprises a catalyst system (CS) at least comprising a catalyst component (C1) selected from the group consisting of ammonium salts and a carboxylic acid as catalyst component (C2). The invention further relates to the porous materials which can be obtained in this way and the use of the porous materials as thermal insulation material and in vacuum insulation panels and vacuum insulation systems, in particular in interior or exterior thermal insulation systems as well as for the insulation of refrigerators and freezers and in water tank or ice maker insulation systems.
    Type: Application
    Filed: July 17, 2018
    Publication date: May 13, 2021
    Applicant: BASF SE
    Inventors: Marc FRICKE, Wibke LOELSBERG, Sohajl MOVAHHED, Dirk WEINRICH