Patents by Inventor Soon-Cheon Seo

Soon-Cheon Seo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200287020
    Abstract: A method of forming complementary metal-oxide-semiconductor (CMOS) nanosheet devices is provided. The method includes forming at least two adjacent trimmed stacks of sacrificial sheet segments and semiconductor nanosheet segments on a substrate, with a dummy gate structure and sidewall spacers on each of the at least two adjacent trimmed stacks. The method further includes forming a protective cap layer over the trimmed stacks, and forming a sacrificial fill layer on the protective cap layer. The method further includes forming a recess through the sacrificial fill layer and protective cap layer between the stacks, depositing a recess liner in the recess, and forming a dielectric fill layer in the recess on the recess liner. The method further includes forming a capping layer on one of the trimmed stacks, removing the sacrificial fill layer from another one of the trimmed stacks, and forming a source/drain on the semiconductor nanosheet segments.
    Type: Application
    Filed: March 8, 2019
    Publication date: September 10, 2020
    Inventors: Soon-Cheon Seo, Injo Ok, Choonghyun Lee
  • Patent number: 10763431
    Abstract: Semiconductor structures are provided that include a memory device buried within interconnect dielectric materials and in which a combination of a compressive metal-containing layer and a tensile metal-containing layer have been used to minimize wafer bow and litho overlay shift as well as a method of forming such semiconductor structures.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: September 1, 2020
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Choonghyun Lee, Chih-Chao Yang, Seyoung Kim, Soon-Cheon Seo
  • Patent number: 10763326
    Abstract: A method of forming a semiconductor structure includes forming a middle-of-line (MOL) oxide layer in the semiconductor structure. The MOL oxide layer including multiple gate stacks formed on a substrate. A nitride layer is formed over a silicide in the MOL oxide layer. At least one self-aligned contact area (CA) element is formed within the nitride layer. The MOL oxide layer is selectively recessed on a first side and a second side of the at least one self-aligned CA element leaving remaining portions of the MOL oxide layer on the nitride layer and a nitride. A nitride cap of the plurality of gate stacks is selectively recessed. An air-gap oxide layer is deposited for introducing one or more air-gaps in the deposited air-gap oxide layer. The air gap oxide layer is reduced to the at least one self-aligned CA element and the nitride layer.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: September 1, 2020
    Assignee: Tessera, Inc.
    Inventors: Injo Ok, Balasubramanian Pranatharthiharan, Soon-Cheon Seo, Charan V. V. S. Surisetty
  • Patent number: 10748962
    Abstract: A method of forming a bottom electrode for MRAM comprises: depositing a conductive material into a trench in a substrate and planarizing; depositing a selective cap on the conductive material; depositing a layer of high stress material on upper surfaces of the substrate and the cap; patterning the high stress material to remove the layer of high stress material on the upper surfaces of the substrate and leaving the layer of high stress material on the upper surfaces of the cap; depositing a layer of dielectric material on the upper surfaces of the substrate and on upper surfaces of the high stress material on the cap; planarizing the layer of dielectric material; and forming a magnetic tunnel junction stack on the dielectric material over the conductive material.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 18, 2020
    Assignee: International Business Machines Corporation
    Inventors: Soon-Cheon Seo, Seyoung Kim, Injo Ok, Choonghyun Lee, Kisup Chung
  • Patent number: 10741559
    Abstract: The disclosure relates to a structure and methods of forming spacers for trench epitaxial structures. The method includes: forming a spacer material between source and drain regions of respective first-type gate structures and second-type gate structures; growing source and drain material about the first-type gate structures, confined within an area defined by the spacer material; and growing source and drain material about the second-type gate structures, confined within an area defined by the spacer material.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: August 11, 2020
    Assignee: ELPIS TECHNOLOGIES INC.
    Inventors: Injo Ok, Balasubramanian Pranatharthiharan, Soon-Cheon Seo, Charan V. V. S. Surisetty
  • Patent number: 10734490
    Abstract: BJT devices with 3D wrap around emitter are provided. In one aspect, a method of forming a BJT device includes: forming a substrate including a first doped layer having a dopant concentration of from about 1×1020 at. % to about 5×1020 at. % and ranges therebetween, and a second doped layer having a dopant concentration of from about 1×1015 at. % to about 1×1018 at. % and ranges therebetween, wherein the first and second doped layers form a collector; patterning a fin(s) in the substrate; forming bottom spacers at a bottom of the fin(s); forming a base(s) that wraps around the fin(s); forming an emitter(s) that wraps around the base(s); and forming sidewall spacers alongside the emitter(s). A BJT device is also provided.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: August 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Choonghyun Lee, Injo Ok, Shogo Mochizuki, Soon-Cheon Seo
  • Publication number: 20200235015
    Abstract: A method for fabricating a vertical transistor device includes forming a first plurality of fins in a first device region and a second plurality of fins in a second device region on a substrate. The first plurality of fins have a SiGe portion exposed above a top surface of the first region and a portion of the second plurality of fins are exposed above a top surface of the second region. The method further includes depositing a first GeO2 layer on the top surface of the device and over the exposed SiGe portion of the first plurality of fins and the exposed portion of the second plurality of fins.
    Type: Application
    Filed: April 3, 2020
    Publication date: July 23, 2020
    Inventors: ChoongHyun Lee, Shogo Mochizuki, Injo Ok, Soon-Cheon Seo
  • Publication number: 20200235238
    Abstract: A vertical transistor that includes a gate structure containing a work function metal liner that is wing-free is provided. The wing-free work function metal liner is provided by recessing a sacrificial material layer portion that is located adjacent to a work function metal liner having a winged surface near the channel and fin ends. The recessed sacrificial material layer portion allows for multi-directional etching of the winged surface of the work function metal liner and thus the wing surface can be removed forming a wing-free work function metal liner. The vertical transistor of the present application has reduced parasitic capacitance and a reduced tendency of electrical shorting between a top source/drain structure and the gate structure. The method of the present application can improve device yield.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 23, 2020
    Inventors: Choonghyun Lee, Soon-Cheon Seo, Injo Ok, Alexander Reznicek
  • Patent number: 10707332
    Abstract: A semiconductor device is provided that includes a pedestal of an insulating material present over at least one layer of a semiconductor material, and at least one fin structure in contact with the pedestal of the insulating material. Source and drain region structures are present on opposing sides of the at least one fin structure. At least one of the source and drain region structures includes at least two epitaxial material layers. A first epitaxial material layer is in contact with the at least one layer of semiconductor material. A second epitaxial material layer is in contact with the at least one fin structure. The first epitaxial material layer is separated from the at least one fin structure by the second epitaxial material layer. A gate structure present on the at least one fin structure.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: July 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Ali Khakifirooz, Alexander Reznicek, Soon-Cheon Seo
  • Patent number: 10693059
    Abstract: Methods for MTJ patterning for a MTJ device are provided. For example, a method includes (a) providing an MTJ device comprising a substrate comprising a plurality of bottom electrodes, a MTJ layer disposed on the substrate, and a plurality of pillars disposed on the MTJ layer and over the plurality of bottom electrodes, wherein the plurality of pillars comprise a metal layer and a hard mask layer disposed on the metal layer, (b) conducting a first ion beam etching of the MTJ device; (c) rotating the MTJ device by 90 degrees in a clockwise or a counter clockwise direction about an axis perpendicular to a top surface of the MTJ device from a starting position; (d) conducting a second ion beam etching of the MTJ device; and (e) repeating steps (c) and (d).
    Type: Grant
    Filed: February 20, 2018
    Date of Patent: June 23, 2020
    Assignee: International Business Machines Corporation
    Inventors: Soon-Cheon Seo, Kisup Chung, Injo Ok, Seyoung Kim, Choonghyun Lee
  • Publication number: 20200176611
    Abstract: A method of forming a semiconductor structure includes forming a metal liner above and in direct contact with a bottom source/drain region, a fin spacer on sidewalls of a fin extending upward from a substrate and a hard mask positioned on top of the fin, the bottom source/drain region includes an epitaxially grown material in direct contact with a bottom portion of the fin not covered by the fin spacer, forming an organic planarization layer directly above the metal liner, simultaneously etching the organic planarization layer and the metal liner until all portions of the metal liner perpendicular to the substrate have been removed and only portions of the metal liner parallel to the substrate remain in contact with the bottom source/drain region, and annealing the semiconductor structure to form a metal silicide layer from the portions of the metal liner in contact with the bottom source/drain region.
    Type: Application
    Filed: November 30, 2018
    Publication date: June 4, 2020
    Inventors: Choonghyun Lee, Soon-Cheon Seo, Injo Ok, Alexander Reznicek
  • Patent number: 10672872
    Abstract: A method of forming a semiconductor structure includes forming a semiconductor layer stack over a substrate. The stack includes a collector layer of silicon (Si) providing a collector region for one or more bipolar junction transistors (BJTs), an emitter layer of Si providing an emitter region for the BJTs, a base layer of (SiGe) with a first germanium percentage (Ge %) providing a base region for the BJTs, and at least one additional layer of SiGe with a second Ge %. The method also includes forming vertical fins in the stack, and forming a germanium oxide (GeOx) layer over the vertical fins. The method further includes performing a thermal anneal to react at least a portion of the GeOx layer with SiGe having one of the first and second Ge % to form a self-alignment layer providing self-alignment for at least one contact to the base layer.
    Type: Grant
    Filed: February 13, 2019
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: ChoongHyun Lee, Injo Ok, Soon-Cheon Seo, Seyoung Kim
  • Patent number: 10672643
    Abstract: Techniques for reducing off-state current in dual channel CMOS devices are provided. In one aspect, a method for forming a dual channel finFET includes: patterning NFET/PFET fins on a wafer from a first channel material and a second Ge-containing channel material; depositing a GeO2 layer on the fins; annealing the fins to selectively oxidize the at least one PFET fin; depositing a liner onto the fins which induces a negative charge in the PFET fin(s); removing unreacted GeO2 and the liner from the NFET fin(s); depositing a dielectric layer onto the fins which induces a positive charge in the NFET fin(s). A dual channel finFET device is also provided.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: June 2, 2020
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Choonghyun Lee, Soon-Cheon Seo, Seyoung Kim
  • Publication number: 20200161547
    Abstract: Semiconductor structures are provided that include a memory device buried within interconnect dielectric materials and in which a combination of a compressive metal-containing layer and a tensile metal-containing layer have been used to minimize wafer bow and litho overlay shift as well as a method of forming such semiconductor structures.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Injo Ok, Choonghyun Lee, Chih-Chao Yang, Seyoung Kim, Soon-Cheon Seo
  • Publication number: 20200161250
    Abstract: A dual interlayer dielectric material structure is located on a passivation dielectric material liner and entirely fills a gap located between each memory device stack of a plurality of memory device stacks. The dual interlayer dielectric material structure includes, from bottom to top, a first void free low-k interlayer dielectric (ILD) material and a second void free low-k ILD material.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Soon-Cheon Seo, Injo Ok, Alexander Reznicek, Choonghyun Lee
  • Patent number: 10658495
    Abstract: A method of forming a silicon-germanium heterojunction bipolar transistor (hbt) device is provided. The method includes forming a stack of four doped semiconductor layers on a semiconductor substrate. The method further includes forming a dummy emitter contact and contact spacers on a fourth doped semiconductor layer of the stack of four doped semiconductor layers, and removing portions of the second, third, and fourth semiconductor layers to form a vertical fin. The method further includes recessing the second and fourth doped semiconductor layers, and depositing a condensation layer on the second, third, and fourth doped semiconductor layers. The method further includes reacting the condensation layer with the third doped semiconductor layer to form a protective segment on a condensed protruding portion.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: May 19, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Injo Ok, Choonghyun Lee, Soon-Cheon Seo, Sungjae Lee
  • Publication number: 20200152755
    Abstract: A bipolar junction transistor includes a collector having a first surface on a first level and a second surface on a second level. A base is formed on the second level of the collector, and an emitter is formed on the base. A dielectric liner is formed on vertical sidewalls of the collector, the base and the emitter and over the first surface. A conductive region is formed adjacent to the base in the dielectric liner. A base contact is formed along one of the vertical sidewalls to connect to the base through the conductive region.
    Type: Application
    Filed: January 16, 2020
    Publication date: May 14, 2020
    Inventors: Choonghyun Lee, Seyoung Kim, Injo Ok, Soon-Cheon Seo
  • Publication number: 20200152798
    Abstract: A semiconductor structure and a method for fabricating the same. The semiconductor structure includes a substrate and a first source/drain layer in contact with at least the substrate. A vertical channel including indium gallium arsenide or germanium contacts at least the first/source drain layer. A gate structure contacts at least the vertical channel. A second source/drain layer contacts at least inner sidewalls of the vertical channel. The method includes epitaxially growing one or more fin structures comprising gallium arsenide in contact with a portion of a substrate. A separate channel layer comprising indium gallium arsenide or germanium is formed in contact with a respective one of the one or more fin structures.
    Type: Application
    Filed: January 16, 2020
    Publication date: May 14, 2020
    Inventors: Injo OK, Choonghyun LEE, Soon-Cheon SEO
  • Publication number: 20200135585
    Abstract: A method for fabricating a vertical transistor device includes forming a first plurality of fins in a first device region and a second plurality of fins in a second device region on a substrate. The first plurality of fins have a SiGe portion exposed above a top surface of the first region and a portion of the second plurality of fins are exposed above a top surface of the second region. The method further includes depositing a first GeO2 layer on the top surface of the device and over the exposed SiGe portion of the first plurality of fins and the exposed portion of the second plurality of fins.
    Type: Application
    Filed: October 29, 2018
    Publication date: April 30, 2020
    Inventors: ChoongHyun Lee, Shogo Mochizuki, Injo Ok, Soon-Cheon Seo
  • Publication number: 20200119170
    Abstract: A method of forming a silicon-germanium heterojunction bipolar transistor (hbt) device is provided. The method includes forming a stack of four doped semiconductor layers on a semiconductor substrate. The method further includes forming a dummy emitter contact and contact spacers on a fourth doped semiconductor layer of the stack of four doped semiconductor layers, and removing portions of the second, third, and fourth semiconductor layers to form a vertical fin. The method further includes recessing the second and fourth doped semiconductor layers, and depositing a condensation layer on the second, third, and fourth doped semiconductor layers. The method further includes reacting the condensation layer with the third doped semiconductor layer to form a protective segment on a condensed protruding portion.
    Type: Application
    Filed: October 11, 2018
    Publication date: April 16, 2020
    Inventors: Injo Ok, Choonghyun Lee, Soon-Cheon Seo, Sungjae Lee