Patents by Inventor Soonam Park

Soonam Park has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200118845
    Abstract: Semiconductor systems and methods may include a semiconductor processing chamber having a gas box defining an access to the semiconductor processing chamber. The chamber may include a spacer characterized by a first surface with which the gas box is coupled, and the spacer may define a recessed ledge on an interior portion of the first surface. The chamber may include a support bracket seated on the recessed ledge that extends along a second surface of the spacer. The chamber may also include a gas distribution plate seated on the support bracket.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 16, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Lok Kee Loh, Dmitry Lubomirsky, Soonwook Jung, Martin Yue Choy, Soonam Park
  • Publication number: 20200111643
    Abstract: An apparatus for plasma processing includes a first plasma source, a first planar electrode, a gas distribution device, a plasma blocking screen and a workpiece chuck. The first plasma source produces first plasma products that pass, away from the first plasma source, through first apertures in the first planar electrode. The first plasma products continue through second apertures in the gas distribution device. The plasma blocking screen includes a third plate with fourth apertures, and faces the gas distribution device such that the first plasma products pass through the plurality of fourth apertures. The workpiece chuck faces the second side of the plasma blocking screen, defining a process chamber between the plasma blocking screen and the workpiece chuck. The fourth apertures are of a sufficiently small size to block a plasma generated in the process chamber from reaching the gas distribution device.
    Type: Application
    Filed: December 5, 2019
    Publication date: April 9, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Soonam Park, Zilu Weng, Dmitry Lubomirsky
  • Publication number: 20200090972
    Abstract: Exemplary support assemblies may include a top puck defining a substrate support surface, where the top puck is also characterized by a height. The assemblies may include a stem coupled with the top puck on a second surface of the top puck opposite the substrate support surface. The assemblies may include an RF electrode embedded within the top puck proximate the substrate support surface. The assemblies may include a heater embedded within the top puck. The assemblies may also include a ground shield embedded within the top puck. The ground shield may be characterized by an inner region extending radially through the top puck. The ground shield may further be characterized by an outer region extending perpendicular to the inner region.
    Type: Application
    Filed: September 14, 2018
    Publication date: March 19, 2020
    Applicant: Applied Materials, Inc.
    Inventors: David Benjaminson, Michael Grace, Soonam Park, Dmitry Lubomirsky, Jaeyong Cho, Nikolai Kalnin, Don Channa K. Kaluarachchi
  • Publication number: 20200090912
    Abstract: Semiconductor processing systems are described, which may include a substrate support assembly having a substrate support surface. Exemplary substrate support assemblies may include a ceramic heater defining the substrate support surface. The assemblies may include a ground plate on which the ceramic heater is seated. The assemblies may include a stem with which the ground plate is coupled. The assemblies may include an electrode embedded within the ceramic heater at a depth from the substrate support surface. The chambers or systems may also include an RF match configured to provide an AC current and an RF power through the stem to the electrode. The RF match may be coupled with the substrate support assembly along the stem. The substrate support assembly and RF match may be vertically translatable within the semiconductor processing system.
    Type: Application
    Filed: September 17, 2018
    Publication date: March 19, 2020
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Soonam Park, David Benjaminson, Xikun Wang, Dmitry Lubomirsky
  • Publication number: 20200090907
    Abstract: Systems and methods may be used to enact plasma tuning. Exemplary semiconductor processing chambers may include a pedestal positioned within the chamber and configured to support a substrate. The pedestal may include an electrode operable to form a plasma within a processing region of the semiconductor processing chamber, with the processing region at least partially defined by the pedestal. The pedestal may include a heater embedded within the pedestal, and the heater may be coupled with a power supply. An RF filter may be coupled between the power supply and the heater. A shunt capacitor may also be coupled between the RF filter and the heater.
    Type: Application
    Filed: September 18, 2018
    Publication date: March 19, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Junghoon Kim, Tae Cho, Theodore Wou, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10593560
    Abstract: Exemplary magnetic induction plasma systems for generating plasma products are provided. The magnetic induction plasma system may include a first plasma source including a plurality of first sections and a plurality of second sections arranged in an alternating manner and fluidly coupled with each other such that at least a portion of plasma products generated inside the first plasma source may circulate through at least one of the plurality of first sections and at least one of the plurality of second sections inside the first plasma source. Each of the plurality of second sections may include a dielectric material. The system may further include a plurality of first magnetic elements each of which may define a closed loop. Each of the plurality of second sections may define a plurality of recesses for receiving one of the plurality of first magnetic elements therein.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Tae Seung Cho, Soonwook Jung, Junghoon Kim, Satoru Kobayashi, Kenneth D. Schatz, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10593523
    Abstract: A method of conditioning internal surfaces of a plasma source includes flowing first source gases into a plasma generation cavity of the plasma source that is enclosed at least in part by the internal surfaces. Upon transmitting power into the plasma generation cavity, the first source gases ignite to form a first plasma, producing first plasma products, portions of which adhere to the internal surfaces. The method further includes flowing the first plasma products out of the plasma generation cavity toward a process chamber where a workpiece is processed by the first plasma products, flowing second source gases into the plasma generation cavity. Upon transmitting power into the plasma generation cavity, the second source gases ignite to form a second plasma, producing second plasma products that at least partially remove the portions of the first plasma products from the internal surfaces.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: March 17, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Publication number: 20200058516
    Abstract: In an embodiment, a plasma source includes a first electrode, configured for transfer of one or more plasma source gases through first perforations therein; an insulator, disposed in contact with the first electrode about a periphery of the first electrode; and a second electrode, disposed with a periphery of the second electrode against the insulator such that the first and second electrodes and the insulator define a plasma generation cavity. The second electrode is configured for movement of plasma products from the plasma generation cavity therethrough toward a process chamber. A power supply provides electrical power across the first and second electrodes to ignite a plasma with the one or more plasma source gases in the plasma generation cavity to produce the plasma products. One of the first electrode, the second electrode and the insulator includes a port that provides an optical signal from the plasma.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 20, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Patent number: 10551328
    Abstract: A test fixture includes an outer conductor and an inner conductor disposed within and electrically isolated from the outer conductor. The inner conductor includes a top portion having a first diameter, a bottom portion having a second diameter, and a third portion proximate the bottom portion that has a third diameter that is less than the second diameter and is greater than the first diameter. An electrical property of a chamber component disposed within the outer conductor is measurable based on application of a signal to at least one of the outer conductor or the inner conductor.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: February 4, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Yufei Zhu, Saurabh Garg, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10550472
    Abstract: Apparatus and methods for gas distribution assemblies are provided. In one aspect, a gas distribution assembly is provided comprising an annular body comprising an annular ring having an inner annular wall, an outer wall, an upper surface, and a bottom surface, an upper recess formed into the upper surface, and a seat formed into the inner annular wall, an upper plate positioned in the upper recess, comprising a disk-shaped body having a plurality of first apertures formed therethrough, and a bottom plate positioned on the seat, comprising a disk-shaped body having a plurality of second apertures formed therethrough which align with the first apertures, and a plurality of third apertures formed between the second apertures and through the bottom plate, the bottom plate sealingly coupled to the upper plate to fluidly isolate the plurality of first and second apertures from the plurality of third apertures.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: February 4, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kien N. Chuc, Qiwei Liang, Hanh D. Nguyen, Xinglong Chen, Matthew Miller, Soonam Park, Toan Q. Tran, Adib Khan, Jang-Gyoo Yang, Dmitry Lubomirsky, Shankar Venkataraman
  • Patent number: 10541184
    Abstract: Embodiments may include a method of etching. The method may also include flowing a gas mixture through a plasma discharge to form plasma effluents. The method may further include flowing the plasma effluents through a plurality of apertures to a layer on a substrate. The layer may have a first thickness. In addition, the method may include etching the layer with the plasma effluents. The method may also include measuring the intensity of emission from a reaction of plasma effluents with the layer. The method may further include summing the intensity of the emission while the plasma effluents are being flowed to the layer to obtain an integrated intensity. The method may then include comparing the integrated intensity to a reference value corresponding to a target etch thickness. The method may include extinguishing the plasma discharge when the integrated intensity is equal to or greater than the reference value.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: January 21, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Soonwook Jung, Soonam Park, Dmitry Lubomirsky
  • Patent number: 10522371
    Abstract: Semiconductor systems and methods may include a semiconductor processing chamber having a gas box defining an access to the semiconductor processing chamber. The chamber may include a spacer characterized by a first surface with which the gas box is coupled, and the spacer may define a recessed ledge on an interior portion of the first surface. The chamber may include a support bracket seated on the recessed ledge that extends along a second surface of the spacer. The chamber may also include a gas distribution plate seated on the support bracket.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: December 31, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Lok Kee Loh, Dmitry Lubomirsky, Soonwook Jung, Martin Yue Choy, Soonam Park
  • Publication number: 20190385823
    Abstract: Gas distribution assemblies are described including an annular body, an upper plate, and a lower plate. The upper plate may define a first plurality of apertures, and the lower plate may define a second and third plurality of apertures. The upper and lower plates may be coupled with one another and the annular body such that the first and second apertures produce channels through the gas distribution assemblies, and a volume is defined between the upper and lower plates.
    Type: Application
    Filed: July 15, 2019
    Publication date: December 19, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Qiwei Liang, Xinglong Chen, Kien Chuc, Dmitry Lubomirsky, Soonam Park, Jang-Gyoo Yang, Shankar Venkataraman, Toan Tran, Kimberly Hinckley, Saurabh Garg
  • Patent number: 10504700
    Abstract: An apparatus for plasma processing includes a first plasma source, a first planar electrode, a gas distribution device, a plasma blocking screen and a workpiece chuck. The first plasma source produces first plasma products that pass, away from the first plasma source, through first apertures in the first planar electrode. The first plasma products continue through second apertures in the gas distribution device. The plasma blocking screen includes a third plate with fourth apertures, and faces the gas distribution device such that the first plasma products pass through the plurality of fourth apertures. The workpiece chuck faces the second side of the plasma blocking screen, defining a process chamber between the plasma blocking screen and the workpiece chuck. The fourth apertures are of a sufficiently small size to block a plasma generated in the process chamber from reaching the gas distribution device.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: December 10, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Toan Q. Tran, Soonam Park, Zilu Weng, Dmitry Lubomirsky
  • Patent number: 10504754
    Abstract: Semiconductor systems and methods may include a semiconductor processing chamber having a gas box defining an access to the semiconductor processing chamber. The chamber may include a spacer characterized by a first surface with which the gas box is coupled, and the spacer may define a recessed ledge on an interior portion of the first surface. The chamber may include a support bracket seated on the recessed ledge that extends along a second surface of the spacer. The chamber may also include a gas distribution plate seated on the support bracket.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: December 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Tien Fak Tan, Lok Kee Loh, Dmitry Lubomirsky, Soonwook Jung, Martin Yue Choy, Soonam Park
  • Patent number: 10504697
    Abstract: Embodiments of the present disclosure generally relate to an apparatus and method for reducing particle generation in a processing chamber. In one embodiment, an apparatus for processing a substrate is disclosed. The apparatus includes a chamber body, a lid assembly disposed above the chamber body, the lid assembly comprising a top electrode and a bottom electrode positioned substantially parallel to the top electrode, a gas distribution plate disposed between a substrate processing region and the lid assembly, and a substrate support disposed within the chamber body, the substrate support supporting having a substrate supporting surface, wherein the top electrode is in electrical communication with a radio frequency (RF) power supply and a DC bias modulation configuration, and the DC bias modulation configuration is configured to operate the top electrode at a constant zero DC bias voltage during a process.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: December 10, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Jonghoon Baek, Soonam Park, Xinglong Chen, Dmitry Lubomirsky
  • Publication number: 20190362944
    Abstract: A system includes a process chamber, a housing that defines a waveguide cavity, and a first conductive plate within the housing. The first conductive plate faces the process chamber. The system also includes one or more adjustment devices that can adjust at least a position of the first conductive plate, and a second conductive plate, coupled with the housing, between the waveguide cavity and the process chamber. Electromagnetic radiation can propagate from the waveguide cavity into the process chamber through apertures in the second conductive plate. The system also includes a dielectric plate that seals off the process chamber from the waveguide cavity, and one or more electronics sets that transmit the electromagnetic radiation into the waveguide cavity. A plasma forms when at least one process gas is within the chamber, and the electromagnetic radiation propagates into the process chamber from the waveguide cavity.
    Type: Application
    Filed: August 9, 2019
    Publication date: November 28, 2019
    Applicant: Applied Materials, Inc.
    Inventors: Satoru Kobayashi, Hideo Sugai, Nikolai Kalnin, Soonam Park, Toan Tran, Dmitry Lubomirsky
  • Patent number: 10490418
    Abstract: In an embodiment, a plasma source includes a first electrode, configured for transfer of one or more plasma source gases through first perforations therein; an insulator, disposed in contact with the first electrode about a periphery of the first electrode; and a second electrode, disposed with a periphery of the second electrode against the insulator such that the first and second electrodes and the insulator define a plasma generation cavity. The second electrode is configured for movement of plasma products from the plasma generation cavity therethrough toward a process chamber. A power supply provides electrical power across the first and second electrodes to ignite a plasma with the one or more plasma source gases in the plasma generation cavity to produce the plasma products. One of the first electrode, the second electrode and the insulator includes a port that provides an optical signal from the plasma.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: November 26, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Soonam Park, Yufei Zhu, Edwin C. Suarez, Nitin K. Ingle, Dmitry Lubomirsky, Jiayin Huang
  • Patent number: 10468285
    Abstract: A wafer chuck assembly includes a puck, a shaft and a base. An insulating material defines a top surface of the puck, a heater element is embedded within the insulating material, and a conductive plate lies beneath the insulating material. The shaft includes a housing coupled with the plate, and electrical connectors for the heater elements and the electrodes. A conductive base housing couples with the shaft housing, and the connectors pass through a terminal block within the base housing. A method of plasma processing includes loading a workpiece onto a chuck having an insulating top surface, providing a DC voltage differential across two electrodes within the top surface, heating the chuck by passing current through heater elements, providing process gases in a chamber surrounding the chuck, and providing an RF voltage between a conductive plate beneath the chuck, and one or more walls of the chamber.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: November 5, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Toan Q. Tran, Sultan Malik, Dmitry Lubomirsky, Shambhu N. Roy, Satoru Kobayashi, Tae Seung Cho, Soonam Park, Shankar Venkataraman
  • Patent number: 10460915
    Abstract: A substrate support assembly includes a shaft assembly, a pedestal coupled to a portion of the shaft assembly, and a first rotary connector coupled to the shaft assembly, wherein the first rotary connector comprises a first coil member surrounding a rotatable shaft member that is electrically coupled to the shaft assembly, the first coil member being rotatable with the rotatable shaft, and a second coil member surrounding the first coil member, the second coil member being stationary relative to the first coil member, wherein the first coil member electrically couples with the second coil member when the rotating radio frequency applicator is energized and provides a radio frequency signal/power to the pedestal through the shaft assembly.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: October 29, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Satoru Kobayashi, Kirby Hane Floyd, Hiroji Hanawa, Soonam Park, Dmitry Lubomirsky