Patents by Inventor Srikanth B. Samavedam

Srikanth B. Samavedam has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9437740
    Abstract: Approaches for enabling epitaxial growth of silicon fins in a device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming a set of silicon fins for a FinFET device, the FinFET device comprising: a set of gate structures formed over a substrate, each of the set of gate structures including a capping layer and a set of spacers; an oxide fill formed over the set of gate structures; a set of openings formed in the device by removing the capping layer and the set of spacers from one or more of the set of gate structures; a silicon material epitaxially grown within the set of openings in the device and then planarized; and wherein the oxide fill is etched to expose the silicon material and form the set of fins.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: September 6, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Johannes M. van Meer, Michael J. Hargrove, Christian Gruensfelder, Yanxiang Liu, Srikanth B. Samavedam
  • Patent number: 9362280
    Abstract: An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: June 7, 2016
    Assignee: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Gauri V. Karve, Mark D. Hall, Srikanth B. Samavedam
  • Publication number: 20150221770
    Abstract: Approaches for enabling epitaxial growth of silicon fins in a device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming a set of silicon fins for a FinFET device, the FinFET device comprising: a set of gate structures formed over a substrate, each of the set of gate structures including a capping layer and a set of spacers; an oxide fill formed over the set of gate structures; a set of openings formed in the device by removing the capping layer and the set of spacers from one or more of the set of gate structures; a silicon material epitaxially grown within the set of openings in the device and then planarized; and wherein the oxide fill is etched to expose the silicon material and form the set of fins.
    Type: Application
    Filed: April 14, 2015
    Publication date: August 6, 2015
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Johannes M. van Meer, Michael J. Hargrove, Christian Gruensfelder, Yanxiang Liu, Srikanth B. Samavedam
  • Patent number: 9040404
    Abstract: A method of fabricating a replacement metal gate structure for a CMOS device. The method includes forming a dummy gate structure on an nFET portion and a pFET portion of the CMOS device; depositing an interlayer dielectric between the dummy gate structures; removing the dummy gate structures from the nFET portion and the pFET portion, resulting in a recess on the nFET portion and a recess on the pFET portion; depositing a first layer of titanium nitride into the recesses on the nFET portion and pFET portion; removing the first layer of titanium nitride from the nFET portion only; depositing a second layer of titanium nitride into the recesses on the nFET portion and pFET portion; depositing a gate metal onto the second layer of titanium nitride in the recesses on the nFET portion and pFET portion to fill the remainder of the recesses.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: May 26, 2015
    Assignees: International Business Machines Corporation, GlobalFoundries, Inc.
    Inventors: Takashi Ando, Kisik Choi, Srikanth B. Samavedam
  • Patent number: 9034737
    Abstract: Approaches for enabling epitaxial growth of silicon fins in a device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming a set of silicon fins for a FinFET device, the FinFET device comprising: a set of gate structures formed over a substrate, each of the set of gate structures including a capping layer and a set of spacers; an oxide fill formed over the set of gate structures; a set of openings formed in the device by removing the capping layer and the set of spacers from one or more of the set of gate structures; a silicon material epitaxially grown within the set of openings in the device and then planarized; and wherein the oxide fill is etched to expose the silicon material and form the set of fins.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: May 19, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Johannes M. van Meer, Michael J. Hargrove, Christian Gruensfelder, Yanxiang Liu, Srikanth B. Samavedam
  • Publication number: 20150050792
    Abstract: Methods for forming a narrow isolation region are disclosed. The narrow isolation region may serve as an extra narrow diffusion break, suitable for use in 3D FinFET technologies. A pad nitride layer is formed over a semiconductor substrate. A cavity is formed in the pad nitride layer. A conformal spacer liner is deposited in the cavity. An anisotropic etch process then forms a trench in the semiconductor substrate. The trench is narrow enough such that a dummy gate completely covers the trench. Epitaxial stressor regions may then be formed adjacent to the dummy gate. The trench is narrow enough such that there is a gap between the epitaxial stressor regions and the trench.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Srikanth B. Samavedam, Zhenyu Hu, Andy Wei, Qi Zhang, Nicholas V. LiCausi, Daniel Pham
  • Publication number: 20150037945
    Abstract: Approaches for enabling epitaxial growth of silicon fins in a device (e.g., a fin field effect transistor device (FinFET)) are provided. Specifically, approaches are provided for forming a set of silicon fins for a FinFET device, the FinFET device comprising: a set of gate structures formed over a substrate, each of the set of gate structures including a capping layer and a set of spacers; an oxide fill formed over the set of gate structures; a set of openings formed in the device by removing the capping layer and the set of spacers from one or more of the set of gate structures; a silicon material epitaxially grown within the set of openings in the device and then planarized; and wherein the oxide fill is etched to expose the silicon material and form the set of fins.
    Type: Application
    Filed: August 1, 2013
    Publication date: February 5, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Johannes M. van Meer, Michael J. Hargrove, Christian Gruensfelder, Yanxiang Liu, Srikanth B. Samavedam
  • Publication number: 20140131808
    Abstract: A method of fabricating a replacement metal gate structure for a CMOS device. The method includes forming a dummy gate structure on an nFET portion and a pFET portion of the CMOS device; depositing an interlayer dielectric between the dummy gate structures; removing the dummy gate structures from the nFET portion and the pFET portion, resulting in a recess on the nFET portion and a recess on the pFET portion; depositing a first layer of titanium nitride into the recesses on the nFET portion and pFET portion; removing the first layer of titanium nitride from the nFET portion only; depositing a second layer of titanium nitride into the recesses on the nFET portion and pFET portion; depositing a gate metal onto the second layer of titanium nitride in the recesses on the nFET portion and pFET portion to fill the remainder of the recesses.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicants: GLOBAL FOUNDRIES Inc, International Business Machines Corporation
    Inventors: Takashi Ando, Kisik Choi, Srikanth B. Samavedam
  • Publication number: 20130249015
    Abstract: An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.
    Type: Application
    Filed: May 13, 2013
    Publication date: September 26, 2013
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Gauri V. Karve, Mark D. Hall, Srikanth B. Samavedam
  • Patent number: 8460996
    Abstract: An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: June 11, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gauri V. Karve, Mark D. Hall, Srikanth B. Samavedam
  • Patent number: 8178401
    Abstract: A method of fabricating a MOS transistor that comprises a dual-metal gate that is formed from heterotypical metals. A gate dielectric (34), such as HfO2, is deposited on a semiconductor substrate. A sacrificial layer (35), is next deposited over the gate dielectric. The sacrificial layer is patterned so that the gate dielectric over a first (pMOS, for example) area (32) of the substrate is exposed and gate dielectric over a second (nMOS, for example) area (33) of the substrate continues to be protected by the sacrificial layer. A first gate conductor material (51) is deposited over the remaining sacrificial area and over the exposed gate dielectric. The first gate conductor material is patterned so that first gate conductor material over the second area of the substrate is etched away. The sacrificial layer over the second area prevents damage to the underlying dielectric material as the first gate conductor material is removed.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: May 15, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: David C. Gilmer, Srikanth B. Samavedam, Philip J. Tobin
  • Patent number: 8039339
    Abstract: A semiconductor device is formed. A first gate dielectric layer is formed over the semiconductor layer. A first conductive layer is formed over the first gate dielectric. A first separation layer is formed over the first conductive layer. A trench is formed in the semiconductor layer to separate the first mesa and the second mesa. The trench is filled with an isolation material to a height above a top surface of the first conductive layer. The first conductive layer is removed from the second mesa. A second conductive layer is formed over the first separation layer of the first mesa and over the second mesa. A planarizing etch removes the second conductive layer from over the first mesa. A first transistor of a first type is formed in the first mesa, and a second transistor of a second type is formed in the second mesa.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: October 18, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: John M. Grant, Srikanth B. Samavedam, Suresh Venkatesan
  • Patent number: 8003454
    Abstract: A semiconductor process and apparatus includes forming NMOS and PMOS transistors (24, 34) with enhanced hole mobility in the channel region of a transistor by selectively relaxing part of a biaxial-tensile strained semiconductor layer (90) in a PMOS device area (97) to form a relaxed semiconductor layer (91), and then epitaxially growing a bi-axially stressed silicon germanium channel region layer (22) prior to forming the NMOS and PMOS gate structures (26, 36) overlying the channel regions, and then depositing a contact etch stop layer (53-56) over the NMOS and PMOS gate structures. Embedded silicon germanium source/drain regions (84) may also be formed adjacent to the PMOS gate structure (70) to provide an additional uni-axial stress to the bi-axially stressed channel region.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: August 23, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Srikanth B. Samavedam, Voon-Yew Thean, Xiangdong Chen
  • Patent number: 7910442
    Abstract: A method including partially etching a first portion of a first layer, wherein the first layer is a conductive layer, is provided. The method further includes removing at least a portion of a second layer. The method further includes completing etching of said first portion of the conductive layer so that said first portion of the conductive layer is removed. The method further includes completing formation of the semiconductor device.
    Type: Grant
    Filed: July 24, 2007
    Date of Patent: March 22, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William J. Taylor, Jr., Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer
  • Patent number: 7858482
    Abstract: A stress memorization technique (SMT) film is deposited over a semiconductor device. The SMT film is annealed with a low thermal budget anneal that is sufficient to create and transfer the stress of the SMT film to the semiconductor device. The SMT film is then removed. After the SMT film is removed, a second anneal is applied to the semiconductor device sufficiently long and at a sufficiently high temperature to activate dopants implanted for forming device source/drains. The result of this approach is that there is minimal gate dielectric growth in the channel along the border of the channel.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: December 28, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Da Zhang, Christopher C. Hobbs, Srikanth B. Samavedam
  • Patent number: 7750374
    Abstract: An electronic device includes an n-channel transistor and a p-channel transistor. The p-channel transistor has a first gate electrode with a first work function and a first channel region including a semiconductor layer immediately adjacent to a semiconductor substrate. In one embodiment, the first work function is less than the valence band of the semiconductor layer. In another embodiment, the n-channel transistor has a second gate electrode with a second work function different from the first work function and closer to a conduction band than a valence band of a second channel region. A process of forming the electronic device includes forming first and second gate electrodes having first and second work functions, respectively. First and second channel regions having a same minority carrier type are associated with the first and second gate electrodes, respectively.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: July 6, 2010
    Assignee: Freescale Semiconductor, Inc
    Inventors: Cristiano Capasso, Srikanth B. Samavedam, Eric J. Verret
  • Publication number: 20100109044
    Abstract: A semiconductor process and apparatus includes forming PMOS transistors (72) with enhanced hole mobility in the channel region by epitaxially growing a bi-axially stressed forward graded silicon germanium channel region layer (22) and a counter-doped silicon cap layer (23) prior to forming a PMOS gate structure (34) and associated source/drain regions (38, 40) in the channel region layer(s).
    Type: Application
    Filed: October 30, 2008
    Publication date: May 6, 2010
    Inventors: Daniel G. Tekleab, Srikanth B. Samavedam
  • Patent number: 7709331
    Abstract: A method of forming devices including forming a first region and a second region in a semiconductor substrate is provided. The method further includes forming a semiconductive material over the first region, wherein the semiconductive material has a different electrical property than the first semiconductor substrate, forming a first dielectric material over the first region, depositing a second dielectric material over the first dielectric material and over the second region, wherein the second dielectric material is different than the first dielectric material, and depositing a gate electrode material over the high dielectric constant material. In one embodiment, the semiconductive material is silicon germanium and the semiconductor substrate is silicon.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: May 4, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gauri V. Karve, Srikanth B. Samavedam, William J. Taylor, Jr.
  • Patent number: 7683439
    Abstract: A semiconductor device structure is formed over a semiconductor substrate and has a gate dielectric over the semiconductor substrate and a gate over the gate dielectric. The gate, at an interface with the gate dielectric, comprises a transition metal, carbon, and an electropositive element. The transition metal comprises one of group consisting of tantalum, titanium, hafnium, zirconium, molybdenum, and tungsten. The electropositive element comprises one of a group consisting of a Group IIA element, a Group IIIB element, and lanthanide series element.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: March 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Srikanth B. Samavedam, David C. Gilmer, Mark V. Raymond, James K. Schaeffer
  • Patent number: 7666730
    Abstract: A method for forming a semiconductor structure includes forming a channel region layer over a semiconductor layer where the semiconductor layer includes a first and a second well region, forming a protection layer over the channel region layer, forming a first gate dielectric layer over the first well region, forming a first metal gate electrode layer over the first gate dielectric, removing the protection layer, forming a second gate dielectric layer over the channel region layer, forming a second metal gate electrode layer over the second gate dielectric layer, and forming a first gate stack including a portion of each of the first gate dielectric layer and the first metal gate electrode layer over the first well region and forming a second gate stack including a portion of each of the second gate dielectric layer and the second metal gate electrode layer over the channel region layer.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: February 23, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Gauri V. Karve, Cristiano Capasso, Srikanth B. Samavedam, James K. Schaeffer, William J. Taylor, Jr.