Patents by Inventor Srinivas Gandikota

Srinivas Gandikota has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220077298
    Abstract: Metal gate stacks and integrated methods of forming metal gate stacks are disclosed. Some embodiments comprise NbN as a PMOS work function material at a thickness in a range of greater than or equal to 5 ? to less than or equal to 50 ?. The PMOS work function material comprising NbN has an effective work function of greater than or equal to 4.75 eV. Some embodiments comprise HfO2 as a high-? metal oxide layer. Some embodiments provide improved PMOS bandedge performance evidenced by improved flatband voltage. Some embodiments exclude transition metal niobium nitride materials as work function materials.
    Type: Application
    Filed: September 4, 2020
    Publication date: March 10, 2022
    Applicant: Applied Material, Inc.
    Inventors: SRINIVAS GANDIKOTA, Steven C. H. Hung, Mandyam Sriram, Jacqueline S. Wrench, Yixiong Yang, Yong Yang
  • Publication number: 20220049353
    Abstract: Methods of depositing a metal film by exposing a substrate surface to a halide precursor and an organosilane reactant are described. The halide precursor comprises a compound of general formula (I): MQzRm, wherein M is a metal, Q is a halogen selected from Cl, Br, F or I, z is from 1 to 6, R is selected from alkyl, CO, and cyclopentadienyl, and m is from 0 to 6. The aluminum reactant comprises a compound of general formula (II) or general formula (III): wherein R1, R2, R3, R4, R5, R6, R7, R8, Ra, Rb, Rc, Rd, Re, and Rf are independently selected from hydrogen (H), substituted alkyl or unsubstituted alkyl; and X, Y, X?, and Y? are independently selected from nitrogen (N) and carbon (C).
    Type: Application
    Filed: August 12, 2020
    Publication date: February 17, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Geetika Bajaj, Darshan Thakare, Prerna Goradia, Robert Jan Visser, Yixiong Yang, Jacqueline S. Wrench, Srinivas Gandikota
  • Publication number: 20220051941
    Abstract: Methods of producing a self-aligned structure comprising a metal chalcogenide are described. Some methods comprise forming a metal-containing film in a substrate feature and exposing the metal-containing film to a chalogen precursor to form a self-aligned structure comprising a metal chalcogenide. Some methods comprise forming a metal-containing film in a substrate feature, expanding the metal-containing film to form a pillar and exposing the pillar to a chalogen precursor to form a self-aligned structure comprising a metal chalcogenide. Some methods comprise directly forming a metal chalcogenide pillar in a substrate feature to form a self-aligned structure comprising a metal chalcogenide. Methods of forming self-aligned vias are also described.
    Type: Application
    Filed: October 27, 2021
    Publication date: February 17, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Amrita B. Mullick, Srinivas Gandikota
  • Patent number: 11245022
    Abstract: Methods of forming and processing semiconductor devices are described. Certain embodiments related to electronic devices which comprise a dipole region having an interlayer dielectric, a high-? dielectric material, and a dipole layer. The dipole layer comprises one or more of titanium lanthanum nitride (TiLaN), titanium yttrium nitride (TiYN), titanium strontium nitride (TiSrN), titanium magnesium nitride (TiMgN, titanium aluminum nitride (TiAlN), titanium tantalum nitride (TiTaN), hafnium carbide (HfC), hafnium nitride (HfN), hafnium oxynitride (HfON), hafnium oxycarbide (HfOC), hafnium carbide aluminum (HfCAl), hafnium aluminum nitride (HfAlN), or hafnium carbonitride (HfCN).
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: February 8, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Yongjing Lin, Karla M. Bernal Ramos, Luping Li, Shih Chung Chen, Jacqueline S. Wrench, Yixiong Yang, Steven C. H. Hung, Srinivas Gandikota, Naomi Yoshida, Lin Dong
  • Patent number: 11244824
    Abstract: Methods for depositing a metal film on a doped amorphous silicon layer as a nucleation layer and/or a glue layer on a substrate. Some embodiments further comprise the incorporation of a glue layer to increase the ability of the doped amorphous silicon layer and metal layer to stick to the substrate.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: February 8, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Rui Cheng, Yihong Chen, Yong Wu, Abhijit Basu Mallick, Srinivas Gandikota
  • Publication number: 20220037154
    Abstract: Embodiments of the present disclosure generally relate to techniques for deposition of high-density films for patterning applications. In one embodiment, a method of processing a substrate is provided. The method includes depositing a carbon hardmask over a film stack formed on a substrate, wherein the substrate is positioned on an electrostatic chuck disposed in a process chamber, implanting ions into the carbon hardmask, wherein depositing the carbon hardmask and implanting ions into the carbon hardmask are performed in the same process chamber, and repeating depositing the carbon hardmask and implanting ions into the carbon hardmask in a cyclic fashion until a pre-determined thickness of the carbon hardmask is reached.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Inventors: Eswaranand VENKATASUBRAMANIAN, Pramit MANNA, Abhijit B. MALLICK, Srinivas GANDIKOTA
  • Patent number: 11232955
    Abstract: Processing methods to etch metal oxide films with less etch residue are described. The methods comprise etching a metal oxide film with a metal halide etchant, and exposing the etch residue to a reductant to remove the etch residue. Some embodiments relate to etching tungsten oxide films. Some embodiments utilize tungsten halides to etch metal oxide films. Some embodiments utilize hydrogen gas as a reductant to remove etch residues.
    Type: Grant
    Filed: March 26, 2020
    Date of Patent: January 25, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amrita B. Mullick, Abhijit Basu Mallick, Srinivas Gandikota, Susmit Singha Roy, Yingli Rao, Regina Freed, Uday Mitra
  • Publication number: 20210395892
    Abstract: Process chamber lids, processing chambers and methods using the lids are described. The lid includes a pumping liner with a showerhead, blocker plate and gas funnel positioned therein. A liner heater is positioned on the pumping liner to control temperature in the pumping liner. Gas is flowed into the gas funnel using a dead-volume free one-way valve with a remote plasma source.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 23, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Muhannad Mustafa, Muhammad M. Rasheed, Mario D. Sanchez, Srinivas Gandikota, Wei V. Tang
  • Publication number: 20210384035
    Abstract: Methods of forming metallic tungsten films selectively on a conductive surface relative to a dielectric surface are described. A substrate is exposed to a first process condition to deposit a fluorine-free metallic tungsten film. The fluorine-free metallic tungsten film is exposed to a second process condition to deposit a tungsten film on the fluorine-free metallic tungsten film.
    Type: Application
    Filed: April 8, 2021
    Publication date: December 9, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Ilanit Fisher, Shih Chung Chen, Kedi Wu, Ashley Lin, Chi-Chou Lin, Yi Xu, Yu Lei, Mandyam Sriram, Wen Ting Chen, Srinivas Gandikota, Chenfei Shen, Naomi Yoshida, He Ren
  • Publication number: 20210384036
    Abstract: Methods of forming metallic tungsten films selectively on a conductive surface relative to a dielectric surface are described. A substrate is exposed to a first process condition to deposit a tungsten-containing film that is substrate free of tungsten metal. The tungsten-containing film is then converted to a metallic tungsten film by exposure to a second process condition.
    Type: Application
    Filed: June 4, 2021
    Publication date: December 9, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Ilanit Fisher, Chi-Chou Lin, Kedi Wu, Wen Ting Chen, Shih Chung Chen, Srinivas Gandikota, Mandyam Sriram, Chenfei Shen, Naomi Yoshida, He Ren
  • Patent number: 11189529
    Abstract: Methods of producing a self-aligned structure comprising a metal chalcogenide are described. Some methods comprise forming a metal-containing film in a substrate feature and exposing the metal-containing film to a chalogen precursor to form a self-aligned structure comprising a metal chalcogenide. Some methods comprise forming a metal-containing film in a substrate feature, expanding the metal-containing film to form a pillar and exposing the pillar to a chalogen precursor to form a self-aligned structure comprising a metal chalcogenide. Some methods comprise directly forming a metal chalcogenide pillar in a substrate feature to form a self-aligned structure comprising a metal chalcogenide. Methods of forming self-aligned vias are also described.
    Type: Grant
    Filed: March 6, 2019
    Date of Patent: November 30, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amrita B. Mullick, Srinivas Gandikota
  • Publication number: 20210358744
    Abstract: A microelectronic device on a semiconductor substrate comprises: a gate electrode; and a spacer adjacent to the gate electrode, the spacer comprising: a the low-k dielectric film comprising one or more species of vanadium oxide, which is optionally doped, and an optional silicon nitride or oxide film. Methods comprise depositing a low-k dielectric film optionally sandwiched by a silicon nitride or oxide film to form a spacer adjacent to a gate electrode of a microelectronic device on a semiconductor substrate, wherein the low-k dielectric film comprises a vanadium-containing film.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Eswaranand Venkatasubramanian, Srinivas Gandikota, Kelvin Chan, Atashi Basu, Abhijit Basu Mallick
  • Patent number: 11177164
    Abstract: Processing methods to form self-aligned high aspect ratio features are described. The methods comprise depositing a metal film on a structured substrate, volumetrically expanding the metal film, depositing a second film between the expanded pillars and optionally recessing the pillars and repeating the process to form the high aspect ratio features.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: November 16, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Susmit Singha Roy, Praburam Gopalraja, Abhijit Basu Mallick, Srinivas Gandikota
  • Publication number: 20210351071
    Abstract: A method for forming a metal nitride layer on a substrate includes exposing a substrate having features formed therein to a first deposition gas mixture including metal source material in a processing chamber to deposit metal source material in the features, supplying a first purge gas mixture into the processing chamber to remove excess metal source material and reaction byproducts from the processing chamber, exposing the substrate to a second deposition gas mixture including a nitride source compound in the processing chamber to form no more than one monolayer of metal nitride, supplying a second purge gas mixture into the processing chamber to remove excess nitride source compound and reaction byproducts from the processing chamber, and exposing the substrate to plasma using a microwave plasma source.
    Type: Application
    Filed: May 11, 2020
    Publication date: November 11, 2021
    Inventors: Wenyi LIU, Wei TANG, Srinivas GANDIKOTA, Yixiong YANG, Yong WU, Jianqiu GUO, Arkaprava DAN, Mandyam SRIRAM
  • Publication number: 20210351074
    Abstract: Methods for filling a substrate feature with a seamless gap fill are described. Methods comprise forming a metal film a substrate surface, the sidewalls and the bottom surface of a feature, the metal film having a void located within the width of the feature; treating the metal film with a plasma; and annealing the metal film to remove the void.
    Type: Application
    Filed: May 5, 2020
    Publication date: November 11, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Yixiong Yang, Srinivas Gandikota, Wei Liu
  • Patent number: 11171047
    Abstract: Methods of forming semiconductor device with fluorine-incorporated metal nitride films are described. A substrate surface is exposed to a metal fluoride precursor to form a metal-fluorine species on the substrate surface. The substrate surface is exposed to a nitriding agent to react with the metal-fluorine species to form a fluorine-incorporated metal nitride film.
    Type: Grant
    Filed: June 28, 2020
    Date of Patent: November 9, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yixiong Yang, Srinivas Gandikota, Steven C. H. Hung, Jacqueline S. Wrench, Yongjing Lin, Susmit Singha Roy, Wei V. Tang, Shih Chung Chen
  • Patent number: 11158507
    Abstract: Embodiments of the present disclosure generally relate to techniques for deposition of high-density films for patterning applications. In one embodiment, a method of processing a substrate is provided. The method includes depositing a carbon hardmask over a film stack formed on a substrate, wherein the substrate is positioned on an electrostatic chuck disposed in a process chamber, implanting ions into the carbon hardmask, wherein depositing the carbon hardmask and implanting ions into the carbon hardmask are performed in the same process chamber, and repeating depositing the carbon hardmask and implanting ions into the carbon hardmask in a cyclic fashion until a pre-determined thickness of the carbon hardmask is reached.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: October 26, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Eswaranand Venkatasubramanian, Pramit Manna, Abhijit B. Mallick, Srinivas Gandikota
  • Publication number: 20210305052
    Abstract: Methods of depositing a film by atomic layer deposition are described. The methods comprise exposing a substrate surface to a first process condition comprising a first reactive gas and a second reactive gas and exposing the substrate surface to a second process condition comprising the second reactive gas. The first process condition comprises less than a full amount of the second reactive gas for a CVD process.
    Type: Application
    Filed: June 14, 2021
    Publication date: September 30, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Kelvin Chan, Yihong Chen, Jared Ahmad Lee, Kevin Griffin, Srinivas Gandikota, Jospeh Yudovsky, Mandyam Sriram
  • Publication number: 20210288086
    Abstract: Methods and apparatus for forming reflector films are described A liner is formed on a substrate surface followed by formation of the reflector layer so that there is no oxygen exposure between liner and reflector layer formation. In some embodiments, a high aspect ratio structure is filled with a reflector material by partially filling the structure with the reflector material while growth is inhibited at a top portion of the structure, reactivating the top portion of the substrate and then filling the structure with the reflector material.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 16, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Luping Li, Jacqueline S. Wrench, Wen Ting Chen, Yixiong Yang, In Seok Hwang, Shih Chung Chen, Srinivas Gandikota
  • Publication number: 20210287900
    Abstract: The present disclosure provides methods for treating film layers in a substrate including positioning the substrate in a processing volume of a processing chamber. The substrate can have high aspect ratio features extending a depth from a substrate surface to a bottom surface. The feature can have a width defined by a first sidewall and a second sidewall. A film with a composition that includes metal is formed on the substrate surface and the first sidewall, the second sidewall, and the bottom surface of each feature. The film in the feature can have a seam extending substantially parallel to the first and second sidewalls. The film is annealed and exposed to an oxygen radical while converting the metal of the film to a metal oxide. The metal oxide is exposed to a hydrogen radical while converting the metal oxide to a metal fill layer.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 16, 2021
    Inventors: Yixiong YANG, Wei LIU, Yuan-hui LO, Srinivas GANDIKOTA, Jacqueline Samantha WRENCH, Yongjing LIN, Wen Ting CHEN, ShihChung CHEN