Patents by Inventor Srinivas V. Pietambaram

Srinivas V. Pietambaram has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190019691
    Abstract: Embodiments herein may relate to providing, on a pad coupled with a carrier panel, a sacrificial element. Embodiments may further relate to providing, on the pad, a mold compound, wherein the mold compound is at least partially adjacent to the sacrificial element. Embodiments may further relate to removing, subsequent to the providing of the mold compound, the sacrificial element to form a via in the mold compound to at least partially expose the pad. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: February 26, 2016
    Publication date: January 17, 2019
    Inventors: Srinivas V. PIETAMBARAM, Rahul N. MANEPALLI
  • Patent number: 10170428
    Abstract: Embodiments are generally directed to cavity generation for an embedded interconnect bridge utilizing a temporary structure. An embodiment of a package includes a substrate; a silicon interconnect bridge including a plurality of interconnections, the interconnect bridge being embedded in the substrate; and a plurality of contacts on a surface of the substrate, the plurality of contacts being coupled with the plurality of interconnections of the interconnect bridge. The interconnect bridge is bonded in a cavity in the substrate, the cavity being formed by removal of at least one temporary structure from the substrate.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: January 1, 2019
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20180323162
    Abstract: An electroless nickel, electroless palladium, electroless tin stack and associated methods are shown. An example method to form a solder bump may include forming a layer of a second material over a first material at a base of a trench in a solder resist layer. The first material includes nickel and the second material includes palladium. The method further includes depositing a third material that includes tin on the second material using an electroless deposition process, and forming a solder bump out of the third material using a reflow and deflux process.
    Type: Application
    Filed: July 19, 2018
    Publication date: November 8, 2018
    Inventors: David Unruh, Srinivas V. Pietambaram
  • Patent number: 10121752
    Abstract: A surface finish may be formed in a microelectronic structure, wherein the surface finish may include a multilayer interlayer structure. Thus, needed characteristics, such as compliance and electro-migration resistance, of the interlayer structure may be satisfied by different material layers, rather attempting to achieve these characteristics with a single layer. In one embodiment, the multilayer interlayer structure may comprises a two-layer structure, wherein a first layer is formed proximate a solder interconnect and comprises a material which forms a ductile joint with the solder interconnect, and a second layer comprising a material having strong electro-migration resistance formed between the first layer and an interconnection pad. In a further embodiment, third layer may be formed adjacent the interconnection pad comprising a material which forms a ductile joint with the interconnection pad.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: November 6, 2018
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Kyu Oh Lee
  • Patent number: 10049996
    Abstract: An electroless nickel, electroless palladium, electroless tin stack and associated methods are shown. An example method to form a solder bump may include forming a layer of a second material over a first material at a base of a trench in a solder resist layer. The first material includes nickel and the second material includes palladium. The method further includes depositing a third material that includes tin on the second material using an electroless deposition process, and forming a solder bump out of the third material using a reflow and deflux process.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: August 14, 2018
    Assignee: Intel Corporation
    Inventors: David Unruh, Srinivas V. Pietambaram
  • Patent number: 10043740
    Abstract: Semiconductor packages with interconnects having passivation thereon is disclosed. The passivation layer may be any suitable dielectric material that may overlie a build-up dielectric layer and metal traces of an interconnect layer in a semiconductor package. Via holes may be formed in the build-up dielectric and the passivation layer may be removed from the bottom of the via hole. By removing the passivation layer at the bottom of the via hole, any residual build-up dielectric may also be removed from the bottom of the via hole. Thus removal of the residual build-up dielectric may not require a desmear process that would otherwise roughen metal and/or dielectric surfaces. The resulting smoother metal and/or dielectric surfaces enabled by the use of the passivation layer may allow greater process latitude and/or flexibility to fabricate relatively smaller dimensional interconnect features and/or relatively improved signaling frequency and integrity.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: August 7, 2018
    Assignee: Intel Coporation
    Inventors: Sri Ranga Sai Boyapati, Rahul N. Manepalli, Dilan Seneviratne, Srinivas V. Pietambaram, Kristof Darmawikarta, Robert Alan May, Islam A. Salama
  • Patent number: 9947631
    Abstract: A surface finish may be formed in a microelectronic structure, wherein the surface finish may include an interlayer comprising a refractory metal, phosphorus, and nickel, with the refractory metal having a content of between about 2 and 12% by weight and the phosphorus having a content of between about 2 and 12% by weight with the remainder being nickel. In one embodiment, the refractory metal of the interlayer may consist of one of tungsten, molybdenum, and ruthenium. In another embodiment, the interlayer may comprise the refractory metal being tungsten having a content of between about 5 and 6% by weight and phosphorus having a content of between about 5 and 6% by weight with the remainder being nickel.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: April 17, 2018
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Kyu-Oh Lee
  • Patent number: 9931820
    Abstract: This document discusses, among other things, a microelectronic system including a mold compound having a base layer and a surface layer on the base layer, and a seed layer deposited on the surface layer of the mold compound. The mold compound includes a monomer epoxy resin, a hardener, a filler material, and a polymer interphase material, wherein the polymer interphase material forms the surface layer of the mold compound having an adhesion strength to the seed layer greater than the monomer epoxy resin and hardener alone.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: April 3, 2018
    Assignee: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20180026180
    Abstract: A magnetoresistive magnetic tunnel junction (MTJ) stack includes a free magnetic region, a fixed magnetic region, and a dielectric layer positioned between the free magnetic region and the fixed magnetic region. In one aspect, the fixed magnetic region consists essentially of an unpinned, fixed synthetic anti-ferromagnetic (SAF) structure which comprises (i) a first layer of one or more ferromagnetic materials, including cobalt, (ii) a multi-layer region including a plurality of layers of ferromagnetic materials, wherein the plurality of layers of ferromagnetic materials include a layer of one or more ferromagnetic materials including cobalt, and (iii) an anti-ferromagnetic coupling layer disposed between the first layer and the multi-layer region. The free magnetic region may include a circular shape, the one or more ferromagnetic materials of the first layer may include cobalt, iron and boron, and the dielectric layer may be disposed on the first layer.
    Type: Application
    Filed: October 2, 2017
    Publication date: January 25, 2018
    Applicant: Everspin Technologies, Inc.
    Inventors: Srinivas V. PIETAMBARAM, Bengt J. AKERMAN, Renu WHIG, Jason A. JANESKY, Nicholas D. RIZZO, Jon M. SLAUGHTER
  • Publication number: 20180019197
    Abstract: Semiconductor packages with interconnects having passivation thereon is disclosed. The passivation layer may be any suitable dielectric material that may overlie a build-up dielectric layer and metal traces of an interconnect layer in a semiconductor package. Via holes may be formed in the build-up dielectric and the passivation layer may be removed from the bottom of the via hole. By removing the passivation layer at the bottom of the via hole, any residual build-up dielectric may also be removed from the bottom of the via hole. Thus removal of the residual build-up dielectric may not require a desmear process that would otherwise roughen metal and/or dielectric surfaces. The resulting smoother metal and/or dielectric surfaces enabled by the use of the passivation layer may allow greater process latitude and/or flexibility to fabricate relatively smaller dimensional interconnect features and/or relatively improved signaling frequency and integrity.
    Type: Application
    Filed: July 12, 2016
    Publication date: January 18, 2018
    Inventors: SRI RANGA SAI BOYAPATI, RAHUL N. MANEPALLI, DILAN SENEVIRATNE, SRINIVAS V. PIETAMBARAM, KRISTOF DARMAWIKARTA, ROBERT ALAN MAY, ISLAM A. SALAMA
  • Publication number: 20180019219
    Abstract: A surface finish may be formed in a microelectronic structure, wherein the surface finish may include a multilayer interlayer structure. Thus, needed characteristics, such as compliance and electro-migration resistance, of the interlayer structure may be satisfied by different material layers, rather attempting to achieve these characteristics with a single layer. In one embodiment, the multilayer interlayer structure may comprises a two-layer structure, wherein a first layer is formed proximate a solder interconnect and comprises a material which forms a ductile joint with the solder interconnect, and a second layer comprising a material having strong electro-migration resistance formed between the first layer and an interconnection pad. In a further embodiment, third layer may be formed adjacent the interconnection pad comprising a material which forms a ductile joint with the interconnection pad.
    Type: Application
    Filed: February 25, 2015
    Publication date: January 18, 2018
    Applicant: INTEL CORPORATION
    Inventors: Srinivas V. Pietambaram, Kyu Oh Lee
  • Publication number: 20180005945
    Abstract: Embodiments are generally directed to cavity generation for an embedded interconnect bridge utilizing a temporary structure. An embodiment of a package includes a substrate; a silicon interconnect bridge including a plurality of interconnections, the interconnect bridge being embedded in the substrate; and a plurality of contacts on a surface of the substrate, the plurality of contacts being coupled with the plurality of interconnections of the interconnect bridge. The interconnect bridge is bonded in a cavity in the substrate, the cavity being formed by removal of at least one temporary structure from the substrate.
    Type: Application
    Filed: June 29, 2016
    Publication date: January 4, 2018
    Inventors: Srinivas V. PIETAMBARAM, Rahul N. MANEPALLI
  • Patent number: 9793468
    Abstract: A magnetoresistive magnetic tunnel junction (MTJ) stack includes a free magnetic region, a fixed magnetic region, and a dielectric layer positioned between the free magnetic region and the fixed magnetic region. In one aspect, the fixed magnetic region consists essentially of an unpinned, fixed synthetic anti-ferromagnetic (SAF) structure which comprises (i) a first layer of one or more ferromagnetic materials, including cobalt, (ii) a multi-layer region including a plurality of layers of ferromagnetic materials, wherein the plurality of layers of ferromagnetic materials include a layer of one or more ferromagnetic materials including cobalt, and (iii) an anti-ferromagnetic coupling layer disposed between the first layer and the multi-layer region. The free magnetic region may include a circular shape, the one or more ferromagnetic materials of the first layer may include cobalt, iron and boron, and the dielectric layer may be disposed on the first layer.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 17, 2017
    Assignee: Everspin Technologies, Inc.
    Inventors: Srinivas V. Pietambaram, Bengt J. Akerman, Renu Whig, Jason A. Janesky, Nicholas D. Rizzo, Jon M. Slaughter
  • Publication number: 20170287838
    Abstract: Electrical interconnect bridge technology is disclosed. An electrical interconnect bridge can include a bridge substrate formed of a mold compound material. The electrical interconnect bridge can also include a plurality of routing layers within the bridge substrate, each routing layer having a plurality of fine line and space (FLS) traces. In addition, the electrical interconnect bridge can include a via extending through the substrate and electrically coupling at least one of the FLS traces in one of the routing layers to at least one of the FLS traces in another of the routing layers.
    Type: Application
    Filed: April 2, 2016
    Publication date: October 5, 2017
    Applicant: Intel Corporation
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20170287860
    Abstract: An electroless nickel, electroless palladium, electroless tin stack and associated methods are shown. An example method to form a solder bump may include forming a layer of a second material over a first material at a base of a trench in a solder resist layer. The first material includes nickel and the second material includes palladium. The method further includes depositing a third material that includes tin on the second material using an electroless deposition process, and forming a solder bump out of the third material using a reflow and deflux process.
    Type: Application
    Filed: April 1, 2016
    Publication date: October 5, 2017
    Inventors: David Unruh, Srinivas V. Pietambaram
  • Publication number: 20170188464
    Abstract: A stretchable electronic assembly comprising a stretchable body, a plurality of electronic components encapsulated in the stretchable body, at least one meandering conductor connected to at least one electronic component of the plurality of electronic components, at least one hollow pocket formed in the stretchable body, the at least one meandering conductor encapsulated in the stretchable body and the at least one meandering conductor located within the at least one hollow pocket formed in the stretchable body.
    Type: Application
    Filed: December 24, 2015
    Publication date: June 29, 2017
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20170173925
    Abstract: This document discusses, among other things, a microelectronic system including a mold compound having a base layer and a surface layer on the base layer, and a seed layer deposited on the surface layer of the mold compound. The mold compound includes a monomer epoxy resin, a hardener, a filler material, and a polymer interphase material, wherein the polymer interphase material forms the surface layer of the mold compound having an adhesion strength to the seed layer greater than the monomer epoxy resin and hardener alone.
    Type: Application
    Filed: December 21, 2015
    Publication date: June 22, 2017
    Inventors: Srinivas V. Pietambaram, Rahul N. Manepalli
  • Publication number: 20170110422
    Abstract: A surface finish may be formed in a microelectronic structure, wherein the surface finish may include an interlayer comprising a refractory metal, phosphorus, and nickel, with the refractory metal having a content of between about 2 and 12% by weight and the phosphorus having a content of between about 2 and 12% by weight with the remainder being nickel. In one embodiment, the refractory metal of the interlayer may consist of one of tungsten, molybdenum, and ruthenium. In another embodiment, the interlayer may comprise the refractory metal being tungsten having a content of between about 5 and 6% by weight and phosphorus having a content of between about 5 and 6% by weight with the remainder being nickel.
    Type: Application
    Filed: October 14, 2015
    Publication date: April 20, 2017
    Applicant: INTEL CORPORATION
    Inventors: Srinivas V. Pietambaram, Kyu-Oh Lee
  • Publication number: 20160315252
    Abstract: A magnetoresistive magnetic tunnel junction (MTJ) stack includes a free magnetic region, a fixed magnetic region, and a dielectric layer positioned between the free magnetic region and the fixed magnetic region. In one aspect, the fixed magnetic region consists essentially of an unpinned, fixed synthetic anti-ferromagnetic (SAF) structure which comprises (i) a first layer of one or more ferromagnetic materials, including cobalt, (ii) a multi-layer region including a plurality of layers of ferromagnetic materials, wherein the plurality of layers of ferromagnetic materials include a layer of one or more ferromagnetic materials including cobalt, and (iii) an anti-ferromagnetic coupling layer disposed between the first layer and the multi-layer region. The free magnetic region may include a circular shape, the one or more ferromagnetic materials of the first layer may include cobalt, iron and boron, and the dielectric layer may be disposed on the first layer.
    Type: Application
    Filed: June 30, 2016
    Publication date: October 27, 2016
    Inventors: Srinivas V. Pietambaram, Bengt J. Akerman, Renu Whig, Jason A. Janesky, Nicholas D. Rizzo, Jon M. Slaughter
  • Patent number: 9391264
    Abstract: An MRAM bit includes a free magnetic region, a fixed magnetic region comprising an anti-ferromagnetic material, and a dielectric layer positioned between the free magnetic region and the fixed magnetic region. In one aspect, the fixed magnetic region consists essentially of an unpinned, fixed synthetic anti-ferromagnetic (SAF) structure which comprises (i) a first layer of one or more ferromagnetic materials, wherein the one or more ferromagnetic materials includes cobalt, (ii) a second layer of one or more ferromagnetic materials wherein the one or more ferromagnetic materials includes cobalt, (iii) a third layer of one or more ferromagnetic materials, and an anti-ferromagnetic coupling layer, wherein: (a) the anti-ferromagnetic coupling layer is disposed between the first and third layers, and (b) the second layer is disposed between the first layer and the anti-ferromagnetic coupling layer.
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: July 12, 2016
    Assignee: Everspin Technologies, Inc.
    Inventors: Srinivas V. Pietambaram, Bengt J. Akerman, Renu Whig, Jason A. Janesky, Nicholas D. Rizzo, Jon M. Slaughter