Patents by Inventor Stephan A. Cohen

Stephan A. Cohen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10224242
    Abstract: Semiconductor devices with low-resistivity metallic interconnect structures are provided. For example, a sacrificial dielectric layer is formed on a substrate, and patterned to form an opening in the sacrificial dielectric layer. The opening is filled with a metallic material to form a metallic interconnect structure, and the sacrificial dielectric layer is removed to expose the metallic interconnect structure. A heat treatment process is applied to the exposed metallic interconnect structure to modulate a microstructure of the metallic material of the metallic interconnect structure from a first microstructure to a second microstructure. A conformal liner layer is selectively deposited on exposed surfaces of the metallic interconnect structure, subsequent to the heat treatment process.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: March 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Stephan A. Cohen
  • Patent number: 10204823
    Abstract: A silicon buffer layer selected from undoped silicon, p-doped silicon or a multilayered stack of, in any order, undoped silicon and p-doped silicon is provided between an n+ silicon layer and an oxide layer of an SOI substrate. The presence of the silicon buffer layer reduces electron injection into the oxide layer during device processing which requires an electric field.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: February 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Stephan A. Cohen, Joel P. de Souza, Karen A. Nummy, Daniel J. Poindexter, Devendra K. Sadana
  • Publication number: 20180122688
    Abstract: A silicon buffer layer selected from undoped silicon, p-doped silicon or a multilayered stack of, in any order, undoped silicon and p-doped silicon is provided between an n+ silicon layer and an oxide layer of an SOI substrate. The presence of the silicon buffer layer reduces electron injection into the oxide layer during device processing which requires an electric field.
    Type: Application
    Filed: December 28, 2017
    Publication date: May 3, 2018
    Inventors: Stephen W. Bedell, Stephan A. Cohen, Joel P. de Souza, Karen A. Nummy, Daniel J. Poindexter, Devendra K. Sadana
  • Patent number: 9922866
    Abstract: A silicon buffer layer selected from undoped silicon, p-doped silicon or a multilayered stack of, in any order, undoped silicon and p-doped silicon is provided between an n+ silicon layer and an oxide layer of an SOI substrate. The presence of the silicon buffer layer reduces electron injection into the oxide layer during device processing which requires an electric field.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: March 20, 2018
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Stephan A. Cohen, Joel P. de Souza, Karen A. Nummy, Daniel J. Poindexter, Devendra K. Sadana
  • Patent number: 9698043
    Abstract: A substrate incorporating semiconductor regions electrically isolated by shallow trenches filled with hexagonal, textured or columnar boron nitride. A process for filling shallow trenches in a semiconductor substrate with columnar textured boron nitride using pulsed plasma enhanced chemical vapor deposition (Pulsed PECVD) and plasma assisted atomic layer deposition (PAALD).
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: July 4, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kevin K. Chan, Stephan A. Cohen, Alfred Grill, Deborah A. Neumayer
  • Patent number: 9613900
    Abstract: An interconnect structure includes a first dielectric material having an undercut region located at an upper surface thereof. A first conductive structure is located above a first area of the undercut region. The first conductive structure comprises a first conductive metal portion having a diffusion barrier portion located on one sidewall surface of the first conductive metal portion and having a metal liner located on another sidewall surface and a bottom surface of the first conductive metal portion. A second conductive structure is located above a second area of the undercut region. The second conductive structure comprises a second conductive material portion having a diffusion barrier portion located on one sidewall surface of the second conductive material portion and having a metal liner located on another sidewall surface and a bottom surface of the second conductive metal portion. A gap is located between the first and second conductive structures.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: April 4, 2017
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Stephan A. Cohen, Eric G. Liniger
  • Publication number: 20170033001
    Abstract: A silicon buffer layer selected from undoped silicon, p-doped silicon or a multilayered stack of, in any order, undoped silicon and p-doped silicon is provided between an n+ silicon layer and an oxide layer of an SOI substrate. The presence of the silicon buffer layer reduces electron injection into the oxide layer during device processing which requires an electric field.
    Type: Application
    Filed: July 31, 2015
    Publication date: February 2, 2017
    Inventors: Stephen W. Bedell, Stephan A. Cohen, Joel P. de Souza, Karen A. Nummy, Daniel J. Poindexter, Devendra K. Sadana
  • Publication number: 20160148867
    Abstract: An interconnect structure includes a first dielectric material having an undercut region located at an upper surface thereof. A first conductive structure is located above a first area of the undercut region. The first conductive structure comprises a first conductive metal portion having a diffusion barrier portion located on one sidewall surface of the first conductive metal portion and having a metal liner located on another sidewall surface and a bottom surface of the first conductive metal portion. A second conductive structure is located above a second area of the undercut region. The second conductive structure comprises a second conductive material portion having a diffusion barrier portion located on one sidewall surface of the second conductive material portion and having a metal liner located on another sidewall surface and a bottom surface of the second conductive metal portion. A gap is located between the first and second conductive structures.
    Type: Application
    Filed: February 1, 2016
    Publication date: May 26, 2016
    Inventors: Chih-Chao Yang, Stephan A. Cohen, Eric G. Liniger
  • Patent number: 9281211
    Abstract: An interconnect structure includes a first dielectric material having an undercut region located at an upper surface thereof. A first conductive structure is located above a first area of the undercut region. The first conductive structure comprises a first conductive metal portion having a diffusion barrier portion located on one sidewall surface of the first conductive metal portion and having a metal liner located on another sidewall surface and a bottom surface of the first conductive metal portion. A second conductive structure is located above a second area of the undercut region. The second conductive structure comprises a second conductive material portion having a diffusion barrier portion located on one sidewall surface of the second conductive material portion and having a metal liner located on another sidewall surface and a bottom surface of the second conductive metal portion. A gap is located between the first and second conductive structures.
    Type: Grant
    Filed: February 10, 2014
    Date of Patent: March 8, 2016
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Stephan A. Cohen, Eric G. Liniger
  • Publication number: 20150228572
    Abstract: An interconnect structure includes a first dielectric material having an undercut region located at an upper surface thereof. A first conductive structure is located above a first area of the undercut region. The first conductive structure comprises a first conductive metal portion having a diffusion barrier portion located on one sidewall surface of the first conductive metal portion and having a metal liner located on another sidewall surface and a bottom surface of the first conductive metal portion. A second conductive structure is located above a second area of the undercut region. The second conductive structure comprises a second conductive material portion having a diffusion barrier portion located on one sidewall surface of the second conductive material portion and having a metal liner located on another sidewall surface and a bottom surface of the second conductive metal portion. A gap is located between the first and second conductive structures.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 13, 2015
    Applicant: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Stephan A. Cohen, Eric G. Liniger
  • Patent number: 9006895
    Abstract: A metal cap is formed on an exposed upper surface of a conductive structure that is embedded within an interconnect dielectric material. During the formation of the metal cap, metallic residues simultaneously form on an exposed upper surface of the interconnect dielectric material. A thermal nitridization process or plasma nitridation process is then performed which partially or completely converts the metallic residues into nitrided metallic residues. During the nitridization process, a surface region of the interconnect dielectric material and a surface region of the metal cap also become nitrided.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: April 14, 2015
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Stephan A. Cohen
  • Patent number: 8962479
    Abstract: A metal cap is formed on an exposed upper surface of a conductive structure that is embedded within an interconnect dielectric material. During the formation of the metal cap, metallic residues simultaneously form on an exposed upper surface of the interconnect dielectric material. A thermal nitridization process or plasma nitridation process is then performed which partially or completely converts the metallic residues into nitrided metallic residues. During the nitridization process, a surface region of the interconnect dielectric material and a surface region of the metal cap also become nitrided.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: February 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Stephan A. Cohen
  • Publication number: 20140332960
    Abstract: A metal cap is formed on an exposed upper surface of a conductive structure that is embedded within an interconnect dielectric material. During the formation of the metal cap, metallic residues simultaneously form on an exposed upper surface of the interconnect dielectric material. A thermal nitridization process or plasma nitridation process is then performed which partially or completely converts the metallic residues into nitrided metallic residues. During the nitridization process, a surface region of the interconnect dielectric material and a surface region of the metal cap also become nitrided.
    Type: Application
    Filed: September 16, 2013
    Publication date: November 13, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Stephan A. Cohen
  • Publication number: 20140332964
    Abstract: A metal cap is formed on an exposed upper surface of a conductive structure that is embedded within an interconnect dielectric material. During the formation of the metal cap, metallic residues simultaneously form on an exposed upper surface of the interconnect dielectric material. A thermal nitridization process or plasma nitridation process is then performed which partially or completely converts the metallic residues into nitrided metallic residues. During the nitridization process, a surface region of the interconnect dielectric material and a surface region of the metal cap also become nitrided.
    Type: Application
    Filed: May 10, 2013
    Publication date: November 13, 2014
    Applicant: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Stephan A. Cohen
  • Publication number: 20140216342
    Abstract: An interconnect conductive metal used in forming an interconnect structure can be formed using a method in which deposition of a metal liner and a reflow anneal are performed in a same multi-chambered processing system without exposing the structure to air between the steps of deposition and reflow annealing. In the disclosure, an interconnect dielectric material including an opening is placed within the multi-chambered processing system and then the interconnect dielectric material is transferred, under vacuum, to a deposition chamber in which the metal liner is deposited. The interconnect dielectric material including the metal liner is then transferred, under the same vacuum, to an annealing chamber in which a reflow anneal is performed.
    Type: Application
    Filed: September 10, 2013
    Publication date: August 7, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chih-Chao Yang, Stephan A. Cohen, Joseph F. Maniscalco
  • Publication number: 20130333923
    Abstract: A layer of silicon nitride having a thickness from 0.5 nanometers to 2.4 nanometers is deposited on a substrate. A plasma nitridation process is carried out on the layer. These steps are repeated for a plurality of additional layers of silicon nitride, until a predetermined thickness is attained. Such steps can be used to provide a multilayer silicon nitride dielectric formed on a substrate having an upper surface of dielectric material with Cu and other conductors embedded within, and a plurality of steps. The multilayer silicon nitride dielectric has a plurality of individual layers each having a thickness from 0.5 nanometers to 2.4 nanometers, and the multilayer silicon nitride dielectric conformally covers the steps of the substrate with a conformality of at least seventy percent. A multilayer silicon nitride dielectric, and a multilevel back end of line interconnect wiring structure using same, are also provided.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 19, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, JR., Son V. Nguyen, Mei-Yee Shek, Hosadurga Shobha, Li-Qun Xia
  • Patent number: 8536069
    Abstract: The present disclosure provides a multilayered cap (i.e., migration barrier) that conforms to the substrate (i.e., interconnect structure) below. The multilayered cap, which can be located atop at least one interconnect level of an interconnect structure, includes, from bottom to top, a first layer comprising silicon nitride and a second layer comprising at least one of boron nitride and carbon boron nitride.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: September 17, 2013
    Assignees: International Business Machines Corporation, Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Stephan A. Cohen, Alfred Grill, Thomas J. Haigh, Jr., Son V. Nguyen, Li-Qun Xia
  • Patent number: D779812
    Type: Grant
    Filed: November 30, 2015
    Date of Patent: February 28, 2017
    Inventor: Stephan Cohen
  • Patent number: D781371
    Type: Grant
    Filed: November 6, 2015
    Date of Patent: March 14, 2017
    Inventor: Stephan Cohen
  • Patent number: D1009983
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: January 2, 2024
    Inventor: Stephan Cohen