Patents by Inventor Stephen Alan Reichert
Stephen Alan Reichert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11278244Abstract: Systems and methods are provided for detecting changes or fluctuations in an analyte concentration signal that are abnormal, e.g., exceed a predetermined threshold, current trend of analyte concentration measurements, etc. Signals indicative of an analyte concentration in a host may be received from an analyte sensor. The signals may be monitored, and a determination can be made as to whether there is a change in the signal. Upon detecting such a change, the change can be compensated for such that a representation of the signal indicates the analyte concentration. Optionally, the cause of the detected changes or fluctuations can also be determined and information regarding the detected changes or fluctuations can be recorded and analyzed for subsequent optimization of the systems and methods as well for transmitting alerts, notifications, etc. to a user to take corrective action.Type: GrantFiled: March 17, 2017Date of Patent: March 22, 2022Assignee: Dexcom, Inc.Inventors: Douglas William Burnette, Hari Hampapuram, Apurv Ullas Kamath, Shawn Larvenz, Aditya Mandapaka, Zebediah L. McDaniel, Tom Miller, Jeffrey R. Wedekind, Yonghuang Zeng, Stephen Alan Reichert
-
Publication number: 20210142912Abstract: Systems and methods disclosed provide ways for Health Care Professionals (HCPs) to be involved in initial patient system set up so that the data received is truly transformative, such that the patient not just understands what all the various numbers mean but also how the data can be used. For example, in one implementation, a CGM device is configured for use by a HCP, and includes a housing and a circuit configured to receive a signal from a transmitter coupled to an indwelling glucose sensor. A calibration module converts the received signal into clinical units. A user interface is provided that is configured to display a measured glucose concentration in the clinical units. The user interface is further configured to receive input data about a patient level, where the input data about the patient level causes the device to operate in a mode appropriate to the patient level.Type: ApplicationFiled: January 7, 2021Publication date: May 13, 2021Inventors: Scott M. Belliveau, Naresh C. Bhavaraju, Darin Edward Chum Dew, Eric Cohen, Anna Leigh Davis, Mark Dervaes, Laura J. Dunn, Minda McDorman Grucela, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Steven David King, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Zebediah L. McDaniel, Sumitaka Mikami, Subrai Girish Pai, Philip Mansiel Pellouchoud, Stephen Alan Reichert, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Stephen J. Vanslyke, Robert Patrick Van Tassel, Matthew D. Wightlin, Richard C. Yang, James Stephen Amidei, David Derenzy, Benjamin Elrod West, Vincent Crabtree, Michael Levozier Moore, Douglas William Burnette, Alexandra Elena Constantin, Nicholas Polytaridis, Dana Charles Cambra, Abhishek Sharma, Kho Braun, Patrick Wile McBride
-
Publication number: 20200375457Abstract: Systems, methods, apparatuses, and devices, for the wireless communication of analyte data are provided. In some embodiments, a method and calibration station for calibrating a continuous analyte sensor system is provided. Methods and testing systems for testing a continuous analyte sensor system is provided. Continuous analyte sensor systems, display devices and peripheral devices configured for wireless communication of analyte, connection, alarm and/or alert data and associated methods are provided.Type: ApplicationFiled: May 22, 2020Publication date: December 3, 2020Inventors: Robert Patrick Van Tassel, John Francis Loughlin, Sean S. Nihalani, James Stephen Amidei, Stephen Alan Reichert, Sebastian Bohm, Krishna Prashant Daita, Brian Christopher Smith, Michael A. Ploof, Benjamin Elrod West, Mark S. Dervaes, Vincent P. Crabtree, William A. Pender, Douglas William Burnette
-
Publication number: 20200375455Abstract: Systems, methods, apparatuses, and devices, for the wireless communication of analyte data are provided. In some embodiments, a method and calibration station for calibrating a continuous analyte sensor system is provided. Methods and testing systems for testing a continuous analyte sensor system is provided. Continuous analyte sensor systems, display devices and peripheral devices configured for wireless communication of analyte, connection, alarm and/or alert data and associated methods are provided.Type: ApplicationFiled: May 22, 2020Publication date: December 3, 2020Inventors: Robert Patrick Van Tassel, John Francis Loughlin, Sean S. Nihalani, James Stephen Amidei, Stephen Alan Reichert, Sebastian Bohm, Krishna Prashant Daita, Brian Christopher Smith, Michael A. Ploof, Benjamin Elrod West, Mark S. Dervaes, Vincent P. Crabtree, William A. Pender, Douglas William Burnette
-
Publication number: 20200275894Abstract: Systems and methods are provided for detecting changes or fluctuations in an analyte concentration signal that are abnormal, e.g., exceed a predetermined threshold, current trend of analyte concentration measurements, etc. Signals indicative of an analyte concentration in a host may be received from an analyte sensor. The signals may be monitored, and a determination can be made as to whether there is a change in the signal. Upon detecting such a change, the change can be compensated for such that a representation of the signal indicates the analyte concentration. Optionally, the cause of the detected changes or fluctuations can also be determined and information regarding the detected changes or fluctuations can be recorded and analyzed for subsequent optimization of the systems and methods as well for transmitting alerts, notifications, etc. to a user to take corrective action.Type: ApplicationFiled: May 19, 2020Publication date: September 3, 2020Inventors: Douglas William Burnette, Hari Hampapuram, Apurv Ullas Kamath, Shawn Larvenz, Aditya Mandapaka, Zebediah L. McDaniel, Tom Miller, Jeffrey R. Wedekind, Yonghuang Zeng, Stephen Alan Reichert
-
Publication number: 20190336053Abstract: Various analyte sensor systems for controlling activation of analyte sensor electronics circuitry are provided. Related methods for controlling analyte sensor electronics circuitry are also provided. Various analyte sensor systems for monitoring an analyte in a host are also provided. Various circuits for controlling activation of an analyte sensor system are also provided. Analyte sensor systems utilizing a state machine having a plurality of states for collecting a plurality of digital counts and waking a controller responsive to a wake up signal are also provided. Related methods for such analyte sensor systems are also provided. Systems for controlling activation of analyte sensor electronics circuitry utilizing a magnetic sensor are further provided. One or more display device configured to display one or more analyte concentration values are also provided.Type: ApplicationFiled: May 1, 2019Publication date: November 7, 2019Inventors: Jason Halac, Sebastian Bohm, Vincent Peter Crabtree, David DeRenzy, Mark S. Dervaes, Nicholas Kalfas, Zebediah L. McDaniel, Michael Levozier Moore, Todd Andrew Newhouse, Michael A. Ploof, Stephen Alan Reichert, Peter C. Simpson, Alexander Leroy Teeter, Rodolfo Garcia, Jaroslav Piotrowiak, Thomas George O'Connell, Arlene G. Doria
-
Publication number: 20190342637Abstract: Various analyte sensor systems for controlling activation of analyte sensor electronics circuitry are provided. Related methods for controlling analyte sensor electronics circuitry are also provided. Various analyte sensor systems for monitoring an analyte in a host are also provided. Various circuits for controlling activation of an analyte sensor system are also provided. Analyte sensor systems utilizing a state machine having a plurality of states for collecting a plurality of digital counts and waking a controller responsive to a wake up signal are also provided. Related methods for such analyte sensor systems are also provided. Systems for controlling activation of analyte sensor electronics circuitry utilizing a magnetic sensor are further provided. One or more display device configured to display one or more analyte concentration values are also provided.Type: ApplicationFiled: May 1, 2019Publication date: November 7, 2019Inventors: Jason Halac, Sebastian Bohm, Vincent Peter Crabtree, David DeRenzy, Mark S. Dervaes, Nicholas Kalfas, Zebediah L. McDaniel, Michael Levozier Moore, Todd Andrew Newhouse, Michael A. Ploof, Stephen Alan Reichert, Peter C. Simpson, Alexander Leroy Teeter, Rodolfo Garcia, Jaroslav Piotrowiak, Thomas George O?Connell, Arlene G. Doria
-
Publication number: 20180182491Abstract: Systems and methods disclosed provide ways for Health Care Professionals (HCPs) to be involved in initial patient system set up so that the data received is truly transformative, such that the patient not just understands what all the various numbers mean but also how the data can be used. For example, in one implementation, a CGM device is configured for use by a HCP, and includes a housing and a circuit configured to receive a signal from a transmitter coupled to an indwelling glucose sensor. A calibration module converts the received signal into clinical units. A user interface is provided that is configured to display a measured glucose concentration in the clinical units. The user interface is further configured to receive input data about a patient level, where the input data about the patient level causes the device to operate in a mode appropriate to the patient level.Type: ApplicationFiled: December 22, 2017Publication date: June 28, 2018Inventors: Scott M. Belliveau, Naresh C. Bhavaraju, Darin Edward Chum Dew, Eric Cohen, Anna Leigh Davis, Mark Dervaes, Laura J. Dunn, Minda McDorman Grucela, Hari Hampapuram, Matthew Lawrence Johnson, Apurv Ullas Kamath, Steven David King, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Zebediah L. McDaniel, Sumitaka Mikami, Subrai Girish Pai, Philip Mansiel Pellouchoud, Stephen Alan Reichert, Eli Reihman, Peter C. Simpson, Brian Christopher Smith, Stephen J. Vanslyke, Robert Patrick Van Tassel, Matthew D. Wightlin, Richard C. Yang, James Stephen Amidei, David Derenzy, Benjamin Elrod West, Vincent Crabtree, Michael Levozier Moore, Douglas William Burnette, Alexandra Elena Constantin, Nicholas Polytaridis, Dana Charles Cambra, Abhishek Sharma, Kho Braun, Patrick Wile McBride
-
Publication number: 20170281092Abstract: Systems and methods are provided for detecting changes or fluctuations in an analyte concentration signal that are abnormal, e.g., exceed a predetermined threshold, current trend of analyte concentration measurements, etc. Signals indicative of an analyte concentration in a host may be received from an analyte sensor. The signals may be monitored, and a determination can be made as to whether there is a change in the signal. Upon detecting such a change, the change can be compensated for such that a representation of the signal indicates the analyte concentration. Optionally, the cause of the detected changes or fluctuations can also be determined and information regarding the detected changes or fluctuations can be recorded and analyzed for subsequent optimization of the systems and methods as well for transmitting alerts, notifications, etc. to a user to take corrective action.Type: ApplicationFiled: March 17, 2017Publication date: October 5, 2017Inventors: Douglas William Burnette, Hari Hampapuram, Apurv Ullas Kamath, Shawn Larvenz, Aditya Mandapaka, Zebediah L. McDaniel, Tom Miller, Jeffrey R. Wedekind, Yonghuang Zeng, Stephen Alan Reichert