Patents by Inventor Stephen Avedis Baratian

Stephen Avedis Baratian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150088084
    Abstract: A method of making an absorbent structure having a three-dimensional topography includes placing at least a portion of the absorbent structure between opposed mold surfaces. At least one of the mold surfaces has a three-dimensional topography. The three-dimensional topography of the mold surface is imparted onto the absorbent structure so that the absorbent structure has a three-dimensional topography corresponding to the three-dimensional topography of the mold surface.
    Type: Application
    Filed: December 2, 2014
    Publication date: March 26, 2015
    Inventors: Andrew Thomas Baker, Theresa Michelle McCoy, Stephen Avedis Baratian, Charles Wilson Colman
  • Patent number: 8932504
    Abstract: A method of making an absorbent structure having a three-dimensional topography includes placing at least a portion of the absorbent structure between opposed mold surfaces. At least one of the mold surfaces has a three-dimensional topography. The three-dimensional topography of the mold surface is imparted onto the absorbent structure so that the absorbent structure has a three-dimensional topography corresponding to the three-dimensional topography of the mold surface.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: January 13, 2015
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Andrew Thomas Baker, Theresa Michelle McCoy, Stephen Avedis Baratian, Charles Wilson Colman
  • Patent number: 8927443
    Abstract: A biodegradable nonwoven laminate is provided. The laminate comprises a spunbond layer formed from substantially continuous filaments that contain a first aliphatic polyester having a melting point of from about 50° C. to about 160° C. The meltblown layer is formed from microfibers that contain a second aliphatic polyester having a melting point of from about 50° C. to about 160° C. The first aliphatic polyester, the second aliphatic polyester, or both have an apparent viscosity of from about 20 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec-1. The first aliphatic polyester may be the same or different than the second aliphatic polyester.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: January 6, 2015
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jayant Chakravarty, Vasily Topolkaraev, Ross T. Kaufman, Stephen Avedis Baratian, Jared L. Martin
  • Publication number: 20140037904
    Abstract: A method of making an absorbent structure having a three-dimensional topography includes placing at least a portion of the absorbent structure between opposed mold surfaces. At least one of the mold surfaces has a three-dimensional topography. The three-dimensional topography of the mold surface is imparted onto the absorbent structure so that the absorbent structure has a three-dimensional topography corresponding to the three-dimensional topography of the mold surface.
    Type: Application
    Filed: October 7, 2013
    Publication date: February 6, 2014
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Andrew Thomas Baker, Theresa Michelle McCoy, Stephen Avedis Baratian, Charles Wilson Colman
  • Patent number: 8617449
    Abstract: A method of making an absorbent structure having a three-dimensional topography includes placing at least a portion of the absorbent structure between opposed mold surfaces. At least one of the mold surfaces has a three-dimensional topography. The three-dimensional topography of the mold surface is imparted onto the absorbent structure so that the absorbent structure has a three-dimensional topography corresponding to the three-dimensional topography of the mold surface.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: December 31, 2013
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Andrew Thomas Baker, Theresa Michelle McCoy, Stephen Avedis Baratian, Charles Wilson Colman
  • Publication number: 20120232514
    Abstract: A method of making an absorbent structure having a three-dimensional topography includes placing at least a portion of the absorbent structure between opposed mold surfaces. At least one of the mold surfaces has a three-dimensional topography. The three-dimensional topography of the mold surface is imparted onto the absorbent structure so that the absorbent structure has a three-dimensional topography corresponding to the three-dimensional topography of the mold surface.
    Type: Application
    Filed: May 24, 2012
    Publication date: September 13, 2012
    Applicant: KIMBERLY-CLARK WORLDWIDE, INC.
    Inventors: Andrew Thomas Baker, Theresa Michelle McCoy, Stephen Avedis Baratian, Charles Wilson Colman
  • Patent number: 8211815
    Abstract: An absorbent structure having a longitudinal axis, a lateral axis, a z-direction axis normal to the longitudinal and lateral axes, longitudinally opposite ends and laterally opposite side edges. An upper surface of the absorbent structure has a three-dimensional topography relative to the longitudinal and lateral axes and defines a plurality of peaks and valleys of the upper surface relative to the z-direction. A lower surface of the absorbent structure has a three-dimensional topography relative to the longitudinal and lateral axes and defines a plurality of the peaks and valleys of the lower surface relative to the z-direction. The absorbent structure has a projected area as determined by a Topography Analysis Method, and the upper surface of the absorbent structure has a vertical area as determined by the Topography Analysis Method of at least about 0.1 cm2 per 1.0 cm2 projected area of the absorbent structure.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: July 3, 2012
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Andrew Thomas Baker, Theresa Michelle McCoy, Stephen Avedis Baratian, Charles Wilson Colman
  • Patent number: 7989062
    Abstract: A biodegradable nonwoven web comprising substantially continuous multicomponent filaments is provided. The filaments comprise a first component and a second component. The first component contains at least one high-melting point aliphatic polyester having a melting point of from about 160° C. to about 250° C. and the second component contains at least one low-melting point aliphatic polyester. The melting point of the low-melting point aliphatic polyester is at least about 30° C. less than the melting point of the high-melting point aliphatic polyester. The low-melting point aliphatic polyester has a number average molecular weight of from about 30,000 to about 120,000 Daltons, a glass transition temperature of less than about 25° C., and an apparent viscosity of from about 50 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec?1.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: August 2, 2011
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jayant Chakravarty, Vasily Topolkaraev, John Herbert Conrad, Stephen Avedis Baratian, Jared L. Martin
  • Patent number: 7779521
    Abstract: Fibers are hydroentangled at temperatures near or above their glass transition temperature, the resultant fabrics are then rapidly cooled. A process of preparing a nonwoven fabric that includes depositing fibers on a foraminous support; impinging hot or warm water upon the fibers to hydroentangle them; and then rapidly cooling the resultant fabric is disclosed. The hydroentangled fabric resulting from this process, products made from the hydroentangle fabric, and the equipment used to prepare the fabrics are described.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: August 24, 2010
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Vasily Aramovich Topolkaraev, John Herbert Conrad, Jared Lockwood Martin, Stephen Avedis Baratian, Jayant Chakravarty, Richard Warren Tanzer
  • Publication number: 20080287026
    Abstract: A biodegradable nonwoven laminate is provided. The laminate comprises a spunbond layer formed from substantially continuous filaments that contain a first aliphatic polyester having a melting point of from about 50° C. to about 160° C. The meltblown layer is formed from microfibers that contain a second aliphatic polyester having a melting point of from about 50° C. to about 160° C. The first aliphatic polyester, the second aliphatic polyester, or both have an apparent viscosity of from about 20 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec-1. The first aliphatic polyester may be the same or different than the second aliphatic polyester.
    Type: Application
    Filed: April 7, 2006
    Publication date: November 20, 2008
    Inventors: Jayant Chakravarty, Vasily Topolkaraev, Ross T. Kaufman, Stephen Avedis Baratian, Jared L. Martin
  • Publication number: 20080287024
    Abstract: A biodegradable nonwoven web comprising substantially continuous multicomponent filaments is provided. The filaments comprise a first component and a second component. The first component contains at least one high-melting point aliphatic polyester having a melting point of from about 160° C. to about 250° C. and the second component contains at least one low-melting point aliphatic polyester. The melting point of the low-melting point aliphatic polyester is at least about 30° C. less than the melting point of the high-melting point aliphatic polyester. The low-melting point aliphatic polyester has a number average molecular weight of from about 30,000 to about 120,000 Daltons, a glass transition temperature of less than about 25° C., and an apparent viscosity of from about 50 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec?1.
    Type: Application
    Filed: April 7, 2006
    Publication date: November 20, 2008
    Inventors: Jayant Chakravarty, Vasily Topolkaraev, John Herbert Conrad, Stephen Avedis Baratian, Jared L. Martin
  • Patent number: 7422712
    Abstract: A technique for incorporating a liquid additive into a nonwoven web is disclosed. Specifically, the liquid additive is loaded into filler particles to form a “dry liquid concentrate”, i.e., pulverulent granular solid or powder loaded with the liquid additive. The incorporation of the liquid additive into dry liquid concentrates provides a variety of benefits. For example, prior to extrusion, the dry liquid concentrates generally retain the properties of filler particles from which they are formed as the liquid remains isolated. In this manner, a higher level of the liquid additive may be compounded with a melt-extrudable base composition without adversely affecting the extrusion process. Only upon extrusion of the composition will a significant portion of the liquid additive be released to provide the desired properties to the resulting nonwoven web.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: September 9, 2008
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Mary Lucille DeLucia, Braulio Polanco, Peter Kobylivker, Ali Yahiaoui, Tamara Lee Mace, Stephen Avedis Baratian, Steven R. Stopper, Charles E. Edmundson
  • Publication number: 20080150185
    Abstract: Fibers are hydroentangled at temperatures near or above their glass transition temperature, the resultant fabrics are then rapidly cooled. A process of preparing a nonwoven fabric that includes depositing fibers on a foraminous support; impinging hot or warm water upon the fibers to hydroentangle them; and then rapidly cooling the resultant fabric is disclosed. The hydroentangled fabric resulting from this process, products made from the hydroentangle fabric, and the equipment used to prepare the fabrics are described.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventors: Vasily Aramovich Topolkaraev, John Herbert Conrad, Jared Lockwood Martin, Stephen Avedis Baratian, Jayant Chakravarty, Richard Warren Tanzer
  • Publication number: 20040253892
    Abstract: An absorbent structure having a longitudinal axis, a lateral axis, a z-direction axis normal to the longitudinal and lateral axes, longitudinally opposite ends and laterally opposite side edges. An upper surface of the absorbent structure has a three-dimensional topography relative to the longitudinal and lateral axes and defines a plurality of peaks and valleys of the upper surface relative to the z-direction. A lower surface of the absorbent structure has a three-dimensional topography relative to the longitudinal and lateral axes and defines a plurality of the peaks and valleys of the lower surface relative to the z-direction. The absorbent structure has a projected area as determined by a Topography Analysis Method, and the upper surface of the absorbent structure has a vertical area as determined by the Topography Analysis Method of at least about 0.1 cm2 per 1.0 cm2 projected area of the absorbent structure.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 16, 2004
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Andrew Thomas Baker, Theresa Michelle McCoy, Stephen Avedis Baratian, Charles Wilson Colman
  • Publication number: 20030203162
    Abstract: A process of making a nonwoven fabric comprising providing a three-dimensional surface that comprises surface features that are air permeable, depositing fibers or a web comprising fibers onto the surface, and stabilizing the fibers to form a nonwoven fabric is provided.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Christopher Dale Fenwick, Bryan David Haynes, Kurtis Lee Brown, Susan Carol Paul, Christian Michael Trusock, Melpo Lambidonis, Stephen Avedis Baratian
  • Publication number: 20030203691
    Abstract: A three-dimensional nonwoven web having a regional, bulk density of less than 0.04 grams per cubic centimeter, a top-side base surface that defines an x,y-plane and at least one macroscopic surface feature extending out of the x,y-plane wherein a macroscopic surface feature is characterized as a feature having an apex that extends at least about 1 millimeter above the x,y-plane of the top-side base surface is provided. The macroscopic feature maintains a height of at least 1 millimeter above the x,y-plane of the top-side base surface under a 1.2 kPa load (Pf) and results in contact of an object resting on the macroscopic feature such that the percent contact area of the nonwoven web with an article resting on the macroscopic surface feature at a 1.2 kPa load (Pf) is less than 50 percent of the bulk area of the nonwoven web supporting the article.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: Christopher Dale Fenwick, Bryan David Haynes, Kurtis Lee Brown, Susan Carol Paul, Christian Michael Trusock, Melpo Lambidonis, Stephen Avedis Baratian