Patents by Inventor Stephen Empedocles

Stephen Empedocles has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7888292
    Abstract: Methods of detecting a component of interest, a change in charge, a pH, a cellular response using nanosensors are provided. Nanosensors, including nanowires and nanowire arrays comprising functionalized and/or non-functionalized nanowires are provided. Nanosensors are used for detection in cellular fragmentation, multiple concentration analysis, glucose detection, and intracellular analysis.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: February 15, 2011
    Assignee: Nanosys, Inc.
    Inventors: Larry Bock, R. Hugh Daniels, Stephen Empedocles, John C. Owicki
  • Patent number: 7851841
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: December 14, 2010
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David P. Stumbo, J. Wallace Parce, Jay L. Goldman
  • Publication number: 20100261013
    Abstract: The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
    Type: Application
    Filed: June 22, 2010
    Publication date: October 14, 2010
    Applicant: NANOSYS, INC.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, David P. Stumbo
  • Publication number: 20100233585
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Application
    Filed: December 20, 2006
    Publication date: September 16, 2010
    Applicant: Nanosys, Inc.
    Inventors: Chunming Niu, Calvin Y.H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Publication number: 20100210472
    Abstract: Devices, systems, kits, and methods for detecting and/or identifying a plurality of spectrally labeled bodies well-suited for performing multiplexed assays. By spectrally labeling the beads with materials which generate identifiable spectra, a plurality of beads may be identified within the fluid. Reading of the beads is facilitated by restraining the beads in arrays, and/or using a focused laser.
    Type: Application
    Filed: November 17, 2009
    Publication date: August 19, 2010
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Stephen A. EMPEDOCLES, Andrew R. Watson, Jian Jin
  • Patent number: 7750235
    Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: July 6, 2010
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai Buretea, Calvin Y. H. Chow, Stephen A. Empedocles, Andreas P. Meisel, J. Wallace Parce
  • Publication number: 20100155696
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Application
    Filed: March 1, 2007
    Publication date: June 24, 2010
    Applicant: NANOSYS, INC.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David Stumbo, J. Wallace Parce, Jay L. Goldman
  • Publication number: 20100139770
    Abstract: Nanocomposite photovoltaic devices are provided that generally include semiconductor nanocrystals as at least a portion of a photoactive layer. Photovoltaic devices and other layered devices that comprise core-shell nanostructures and/or two populations of nanostructures, where the nanostructures are not necessarily part of a nanocomposite, are also features of the invention. Varied architectures for such devices are also provided including flexible and rigid architectures, planar and non-planar architectures and the like, as are systems incorporating such devices, and methods and systems for fabricating such devices. Compositions comprising two populations of nanostructures of different materials are also a feature of the invention.
    Type: Application
    Filed: August 4, 2006
    Publication date: June 10, 2010
    Applicant: Nanosys, Inc.
    Inventors: Erik Scher, Mihai A. Buretea, Calvin Chow, Stephen Empedocles, Andreas Meisel, J. Wallace Parce
  • Patent number: 7701428
    Abstract: The present invention is directed to a display using nanowire transistors. In particular, a liquid crystal display using nanowire pixel transistors, nanowire row transistors, nanowire column transistors and nanowire edge electronics is described. A nanowire pixel transistor is used to control the voltage applied across a pixel containing liquid crystals. A pair of nanowire row transistors is used to turn nanowire pixel transistors that are located along a row trace connected to the pair of nanowire row transistors on and off. Nanowire column transistors are used to apply a voltage across nanowire pixel transistors that are located along a column trace connected to a nanowire column transistor. Displays including organic light emitting diodes (OLED) displays, nanotube field effect displays, plasma displays, micromirror displays, micoelectromechanical (MEMs) displays, electrochromic displays and electrophoretic displays using nanowire transistors are also provided.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: April 20, 2010
    Assignee: Nanosys, Inc.
    Inventors: Dave Stumbo, Stephen Empedocles
  • Publication number: 20090317044
    Abstract: This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
    Type: Application
    Filed: September 4, 2009
    Publication date: December 24, 2009
    Applicant: NANOSYS, INC.
    Inventors: Mihai Buretea, Stephen Empedocles, Chunming Niu, Erik C. Scher
  • Patent number: 7603003
    Abstract: This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: October 13, 2009
    Assignee: Nanosys, Inc
    Inventors: Mihai A. Bureatea, Stephen A. Empedocles, Chunming Niu, Erik C. Scher
  • Patent number: 7559481
    Abstract: Devices, systems, methods, and compositions of matter can track and/or identify a library of elements, particularly for use with fluids, particulates, cells, and the like. Signals from one or more semiconductor nanocrystals may be combined to define spectral codes. Separation of signal wavelengths within dedicated wavelength ranges or windows facilitates differentiation of spectral codes, while calibration signals within the spectral codes can avoid ambiguity. Modeling based on prior testing can help derive libraries of acceptable codes.
    Type: Grant
    Filed: March 23, 2004
    Date of Patent: July 14, 2009
    Assignee: Life Technologies Corporation
    Inventors: Joseph A. Treadway, Stephen A. Empedocles, Andrew R. Watson
  • Publication number: 20090176221
    Abstract: The use of semiconductor nanocrystals as detectable labels in various chemical and biological applications is disclosed. The methods find use for detecting a single analyte, as well as multiple analytes by using more than one semiconductor nanocrystal as a detectable label, each of which emits at a distinct wavelength.
    Type: Application
    Filed: May 19, 2008
    Publication date: July 9, 2009
    Applicant: INVITROGEN CORPORATION
    Inventors: Marcel P. Bruchez, R. Hugh Daniels, Stephen A. Empedocles, Vince E. Phillips, Edith Y. Wong, Donald A. Zehnder
  • Patent number: 7515333
    Abstract: Nanomaterials for use in optoelectronic applications, and particularly nanocomposite optical amplifiers. nanocomposite optical amplifiers (NOAs), e.g., provided on integrated optical chips, for cost-effective broadband amplification across the entire clear-window of optical fiber. It is expected that such systems could provide a 15× increase in bandwidth over existing technology, while remaining compatible with all future advances in bit-rate and channel spacing.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: April 7, 2009
    Assignee: Nanosy's, Inc.
    Inventor: Stephen Empedocles
  • Publication number: 20090017363
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Application
    Filed: September 19, 2008
    Publication date: January 15, 2009
    Applicant: NANOSYS, INC.
    Inventors: Chunming Niu, Calvin Y.H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Publication number: 20090010608
    Abstract: This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
    Type: Application
    Filed: September 17, 2008
    Publication date: January 8, 2009
    Applicant: NANOSYS, INC.
    Inventors: Mihai Buretea, Stephen Empedocles, Chunming Niu, Erik C. Scher
  • Patent number: 7427328
    Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: September 23, 2008
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Chunming Niu, Stephen A. Empedocles, Linda T. Romano, Jian Chen, Vijendra Sahi, Lawrence A. Bock, David P. Stumbo, J. Wallace Parce, Jay L. Goldman
  • Publication number: 20080105855
    Abstract: This invention provides composite materials comprising nanostructures (e.g., nanowires, branched nanowires, nanotetrapods, nanocrystals, and nanoparticles). Methods and compositions for making such nanocomposites are also provided, as are articles comprising such composites. Waveguides and light concentrators comprising nanostructures (not necessarily as part of a nanocomposite) are additional features of the invention.
    Type: Application
    Filed: April 3, 2007
    Publication date: May 8, 2008
    Applicant: NANOSYS, INC.
    Inventors: Mihai Buretea, Stephen Empedocles, Chunming Niu, Erik C. Scher
  • Patent number: 7365395
    Abstract: Artificial dielectrics using nanostructures, such as nanowires, are disclosed. In embodiments, artificial dielectrics using other nanostructures, such as nanorods, nanotubes or nanoribbons and the like are disclosed. The artificial dielectric includes a dielectric material with a plurality of nanowires (or other nanostructures) embedded within the dielectric material. Very high dielectric constants can be achieved with an artificial dielectric using nanostructures. The dielectric constant can be adjusted by varying the length, diameter, carrier density, shape, aspect ratio, orientation and density of the nanostructures. Additionally, a controllable artificial dielectric using nanostructures, such as nanowires, is disclosed in which the dielectric constant can be dynamically adjusted by applying an electric field to the controllable artificial dielectric. A wide range of electronic devices can use artificial dielectrics with nanostructures to improve performance.
    Type: Grant
    Filed: August 15, 2005
    Date of Patent: April 29, 2008
    Assignee: Nanosys, Inc.
    Inventors: David P. Stumbo, Stephen A. Empedocles, Francisco Leon, J. Wallace Parce
  • Patent number: 7339184
    Abstract: The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 4, 2008
    Assignee: Nanosys, Inc
    Inventors: Linda T. Romano, Jian Chen, Xiangfeng Duan, Robert S. Dubrow, Stephen A. Empedocles, Jay L. Goldman, James M. Hamilton, David L. Heald, Francesco Lemmi, Chunming Niu, Yaoling Pan, George Pontis, Vijendra Sahi, Erik C. Scher, David P. Stumbo, Jeffery A. Whiteford