Patents by Inventor Stephen J. Colavito

Stephen J. Colavito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7111786
    Abstract: An automatically-activated wireless code symbol reading system comprising a hand-supportable housing having a manually-activatable data transmission switch under automatic communication range dependent control. When a bar code symbol is read, the bar code reader is located inside the predetermined RF data communication range of the system, then the symbol character data string, produced at substantially the same time as the manual activation of the data transmission switch, is transmitted to the base station over the wireless RF communication link. If the device is outside the range, then an audible and/or visual indication is automatically generated, and the packaged symbol character data string is packaged and transmitted to a data storage buffer aboard the bar code reader. Then when the bar code symbol reader is moved within the communication range of the system, the buffered/packaged symbol character data is automatically transmitted to the base station by the RF-based data communication link.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: September 26, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Mark Schmidt, Garrett Russell, David M. Wilz, Sr., Robert Blake, Donald T. Hudrick, Stephen J. Colavito, C. Harry Knowles, George Rockstein, Xiaoxun Zhu, John Bonanno, Sung Byun, Congwei Xu, Min Jiang, Lin Wang, Meng Hu, Hongjian Jin, MingQing Ji, Shamei Shi, Ka Man Au, Patrick Giordano
  • Patent number: 7104453
    Abstract: A fully automated package identification and measuring system (300), in which an onmidirectional holographic scanning tunnel (100) is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem (500, 600) is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identificaton data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: September 12, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Xiaoxun Zhu, Ka Man Au, Gennady Germaine, George Kolis, Timothy A. Good, Michael D. Schnee, Robert E. Blake, Carl Harry Knowles, Sankar Ghosh, Charles A. Naylor, David M. Wilz, Sr., Constantine J. Tsikos, Francis E. Lodge, Stephen J. Colavito, George B. Rockstein
  • Patent number: 7104454
    Abstract: A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathamatical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathamatical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: September 12, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, Andrew D. Dehennis, Xiaoxun Zhu, David M. Wilz, Sr., George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, George Kolis, C. Harry Knowles
  • Patent number: 7077327
    Abstract: Disclosed is a fully automatic bar code symbol reading system having an hand-supportable laser bar code reading device which can be used in either an automatic hands-on mode of operation, or in an automatic hands-free mode of operation. The system includes a scanner support frame for supporting the hand-supportable device in a user-selected mounting position, and permits complete gripping of its handle portion prior to its use in the hands-on mode of operation. In general, the hand-supportable bar code reading device has long-range and short-range modes of object detection, bar code presence detection and bar code symbol reading. In the illustrative embodiment, the long-range mode is automatically selected when the hand-supportable bar code reading device is placed within the scanner support stand during the automatic hands-free mode of operation.
    Type: Grant
    Filed: July 2, 1999
    Date of Patent: July 18, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Carl H. Knowles, George B. Rockstein, David M. Wilz, Sr., Stephen J. Colavito, Gennady Germaine
  • Patent number: 7070106
    Abstract: An Internet-based remote monitoring, configuration and service (RMCS) system capable of monitoring, configuring and servicing a planar laser illumination and imaging (PLIIM) based network. The network has one or more nodes and performs object identification and attribute acquisition functions. Each node is a PLIIM-based subsystem operably connected to a digital communications network interconnectable to the infrastructure of the Internet. The Internet-based RMCS system comprises a monitoring subsystem for remotely monitoring a set parameters associated with the PLIIM-based network. The set of parameters relate to network, system and/or subsystem characteristics of the PLIIM-based network. The RMCS also includes an analyzing subsystem for remotely analyzing the parameters to diagnose (i) performance failures in the PLIIM-based network, as well as (ii) the operation and performance of the PLIIM-based network.
    Type: Grant
    Filed: October 31, 2001
    Date of Patent: July 4, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: C. Harry Knowles, Mark C. Schmidt, Xiaoxun Zhu, Shawn Defoney, Edward Skypala, Constantine J. Tsikos, Ka Man Au, Barry E. Schwartz, Allan Wirth, Andrew Jankevics, Timothy A. Good, Sankar Ghosh, Michael D. Schnee, George Kolis, Thomas Amundsen, Charles A. Naylor, Robert Blake, Russell Joseph Dobbs, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., William Svedas, Steven Y. Kim, Dale M. Fischer, Jon Van Tassell
  • Patent number: 7048192
    Abstract: Disclosed is an automatically-activated wireless code symbol reading system comprising a bar code symbol reading mechanism contained within a hand-supportable housing having a manually-activatable data transmission switch. During symbol reading operations, the bar code symbol reading mechanism automatically generates a visible laser scanning pattern for repeatedly reading one or more bar code symbols on an object during a bar code symbol reading cycle, and automatically generating a new symbol character data string in response to each bar code symbol read thereby. During system operation, the user visually aligns the visible laser scanning pattern with a particular bar code symbol on an object (e.g. product, bar code menu, etc.) so that the bar code symbol is scanned, detected and decoded in a cyclical manner.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: May 23, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Mark Schmidt, Garrett Russell, David M. Witz, Sr., Robert Blake, Donald T. Hudrick, Stephen J. Colavito, C. Harry Knowles, George Rockstein, Xiaoxun Zhu, John Bonanno, Sung Byun, Congwei Xu, Min Jiang, Lin Wang, Meng Hu, Hongjian Jin, MingQing Ji, Shamei Shi, Ka Man Au, Patrick Giordano
  • Patent number: 7040540
    Abstract: A code symbol reading device includes a portable housing that contains a source of optical energy. This optical energy is projected into a scan field external to the housing and is incident upon a code symbol situated on an object located within the scan field. Optical energy reflected off the code symbol is detected within the housing to produce scan data that is indicative of the detected optical energy. The scan data is processed to detect and decode the code symbol and to produce symbol character data that are representative of the decoded code symbol. A data packet utilizing the symbol character data is constructed and then used to modulate an electromagnetic carrier sign that is transmitted to a base unit. At the base unit, the carrier signal is demodulated and the data packet is recovered. The received data packet is processed to recover the symbol character data, and an acknowledgment signal is generated to acknowledge the receipt of the symbol character data at the base unit.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: May 9, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Carl H. Knowles, George B. Rockstein, David M. Wilz, Sr., Stephen J. Colavito, Gennady Germaine
  • Patent number: 7028904
    Abstract: A wireless bar code symbol reading system for use in a work environment, comprising a wireless hand-supportable bar code symbol reader in two-way RF communication with a base station operably connected to a host system, by way of an RF-based wireless data communication link having a predetermined RF communication range over which two-way communication of data packets can occur in a reliable manner. When the wireless bar code symbol reader is located inside of the predetermined RF communication range based on measuring the strength of the detected reference signal, it automatically transmits to the base station, the symbol character data string produced while the reader is located inside of the predetermined RF communication range. When the wireless reader is located outside of the range, based on measuring the strength of said detected reference signal, the reader automatically collects and stores the symbol character data string produced during that time.
    Type: Grant
    Filed: January 12, 2003
    Date of Patent: April 18, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Mark Schmidt, Garrett Russell, David M. Wilz, Sr., Robert Blake, Donald T. Hudrick, Stephen J. Colavito, C. Harry Knowles, George Rockstein, Xiaoxun Zhu, John Bonanno, Sung Byun, Congwei Xu, Min Jiang, Lin Wang, Meng Hu, Hongjian Jin, MingQing Ji, Shamei Shi, Ka Man Au, Patrick Giordano
  • Patent number: 7007849
    Abstract: An automatically-activated laser scanning 2-D bar code symbol reading system for use in a work environment, wherein a hand-supportable 2-D bar code symbol reader is arranged in two-way communication with a base station operably connected to a host system. The 2-D bar code symbol reader includes (i) a bar code symbol data detector for automatically detecting each line of said 2-D bar code symbol, and producing a line of scan data for buffering in a buffer memory, (ii) an audible data capture buffering indicator for automatically generating audible sounds as each line of bar code symbol data is captured and buffered in said buffer memory, and (iii) a decode processor for automatically decode processing an entire set of scan data collected in said buffer memory and corresponding to a scanned 2-D bar code symbol, and generating a symbol character data string representative of said read 2-D bar code symbol.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: March 7, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Mark Schmidt, Garrett Russell, David M. Wilz, Sr., Robert Blake, Donald T. Hudrick, Stephen J. Colavito, C. Harry Knowles, George Rockstein, Xiaoxun Zhu, John Bonanno, Sung Byun, Congwei Xu, Min Jiang, Lin Wang, Meng Hu, Hongjian Jin, MingQing Ji, Shamei Shi, Ka Man Au, Patrick Giordano
  • Patent number: 7000839
    Abstract: A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: February 21, 2006
    Assignee: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, Xiaoxun Zhu, David M. Wilz, Sr., George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, Sankar Ghosh, George Kolis, Ian A. Scott, Thomas Amundsen, Gennady Germaine, Andrew D. Dehennis, LeRoy Dickson, Carl Harry Knowles
  • Patent number: 6978935
    Abstract: A planar laser illumination and imaging (PLIIM) based system comprising a linear image formation and detection module having (i) an image sensing chip having a plurality of conductive pins establishing electrical interconnections with conductive elements within a chip mounting socket mounted on an electronic camera board, and (ii) image forming optics with a field of view. The system also includes a heat-exchanging structure, rigidly connected to the image formation optics, and having (i) a body portion provided with heat exchanging elements, (ii) a plurality of apertures through which the plurality of conductive pins on the image sensing chip pass to establish electrical interconnections with the conductive elements within the chip mounting socket, and (III) a plurality of mechanical elements for releasably engaging the package of the image sensing chip so as to rigidly maintain the image sensing chip in alignment with the image forming optics.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: December 27, 2005
    Assignee: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark S. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 6978936
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: December 27, 2005
    Assignee: Metpologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Sr., Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20040251307
    Abstract: Disclosed is an automatically-activated wireless code symbol reading system comprising a bar code symbol reading mechanism contained within a hand-supportable housing having a manually-activatable data transmission switch. During symbol reading operations, the bar code symbol reading mechanism automatically generates a visible laser scanning pattern for repeatedly reading one or more bar code symbols on an object during a bar code symbol reading cycle, and automatically generating a new symbol character data string in response to each bar code symbol read thereby. During system operation, the user visually aligns the visible laser scanning pattern with a particular bar code symbol on an object (e.g. product, bar code menu, etc.) so that the bar code symbol is scanned, detected and decoded in a cyclical manner.
    Type: Application
    Filed: July 3, 2003
    Publication date: December 16, 2004
    Applicant: Metrologic Instruments, Inc.
    Inventors: Mark Schmidt, Garrett Russell, David M. Wilz, Robert Blake, Donald T. Hudrick, Stephen J. Colavito, C. Harry Knowles, George Rockstein, Xiaoxun Zhu, John Bonanno, Sung Byun, Congwei Xu, Min Jiang, Lin Wang, Meng Hu, Hongjian Jin, MingQing Ji, Shamei Shi, Ka Man Au, Patrick Giordano
  • Patent number: 6761317
    Abstract: A code symbol reading device includes a portable housing that contains a light source. Light from the light source is projected into a scan field external to the housing and onto a code symbol on an object located within the scan field. The light reflected off the code symbol is detected within the housing to produce scan data that is indicative of the detected light intensity. The scan data is processed to detect and decode the code symbol and to produce symbol character data that are representative of the decoded code symbol. A data packet utilizing the symbol character data is synthesized and modulated onto a carrier signal that is transmitted to a base unit where the carrier signal is demodulated and the data packet recovered. The received data packet is analyzed to recover the symbol character data, and an acknowledgment signal is produced to acknowledge the receipt of the symbol character data at the base unit.
    Type: Grant
    Filed: August 5, 2002
    Date of Patent: July 13, 2004
    Assignee: Metrologic Instruments, Inc.
    Inventors: Carl H. Knowles, George B. Rockstein, David M. Wilz, Sr., Stephen J. Colavito, Gennady Germaine
  • Patent number: 6742709
    Abstract: A bar code symbol reading system is disclosed comprising a hand-supportable bar code symbol reading device which embodies an electronically-controlled bar code symbol reading engine for producing a raster-type laser scanning pattern in either a hands-free or hands-on mode of operation for scanning 1-D and 2D bar code symbols. The electronically-controlled bar code symbol reading engine has (i) a high-speed/high-resolution raster scanning mode of operation, during which a high-speed, high-resolution raster-type scanning pattern is precisely generated under electronic control, and (ii) a high-speed/low-resolution raster scanning mode of operation during which a high-speed, low-resolution raster-type scanning pattern is precisely generated under electronic control.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: June 1, 2004
    Assignee: Metrologic Instruments, Inc.
    Inventors: Robert E. Blake, Stephen J. Colavito, Xiaoxun Zhu, Charles Naylor, Thomas C. Amundsen, Thomas Carullo, C. Harry Knowles
  • Publication number: 20040089721
    Abstract: Disclosed is an automatically-activated code symbol reading system comprising a bar code symbol reading mechanism contained within a hand-supportable housing having a manually-activatable data transmission switch. During symbol reading operations, the bar code symbol reading mechanism automatically generates a visible laser scanning pattern for repeatedly reading one or more bar code symbols on an object during a bar code symbol reading cycle, and automatically generating a new symbol character data string in response to each bar code symbol read thereby. During system operation, the user visually aligns the visible laser scanning pattern with a particular bar code symbol on an object (e.g. product, bar code menu, etc.) so that the bar code symbol is scanned, detected and decoded in a cyclical manner.
    Type: Application
    Filed: April 25, 2003
    Publication date: May 13, 2004
    Inventors: David M. Wilz, George B. Rockstein, Robert E. Blake, Mark Schmidt, Garrett Russell, Donald T. Hudrick, Stephen J. Colavito, Carl Harry Knowles
  • Publication number: 20040069854
    Abstract: A fully automated package identification and measuring system, in whic an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathamatical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathamatical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Application
    Filed: May 15, 2003
    Publication date: April 15, 2004
    Applicant: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, Andrew D. Dehennis, Xiaoxun Zhu, David M. Wilz, George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, George Kolis, C. Harry Knowles
  • Patent number: 6705528
    Abstract: A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Grant
    Filed: February 19, 2002
    Date of Patent: March 16, 2004
    Assignee: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, Xiaoxun Zhu, David M. Wilz, Sr., George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, Sankar Ghosh, George Kolis, Ian A. Scott, Andrew D. Dehennis, Thomas Amundsen, LeRoy Dickson, Carl Harry Knowles
  • Publication number: 20040046031
    Abstract: A code symbol reading device includes a portable housing that contains a source of optical energy. This optical energy is projected into a scan field external to the housing and is incident upon a code symbol situated on an object located within the scan field. Optical energy reflected off the code symbol is detected within the housing to produce scan data that is indicative of the detected optical energy. The scan data is processed to detect and decode the code symbol and to produce symbol character data that are representative of the decoded code symbol. A data packet utilizing the symbol character data is constructed and then used to modulate an electromagnetic carrier sign that is transmitted to a base unit. At the base unit, the carrier signal is demodulated and the data packet is recovered. The received data packet is processed to recover the symbol character data, and an acknowledgment signal is generated to acknowledge the receipt of the symbol character data at the base unit.
    Type: Application
    Filed: August 12, 2003
    Publication date: March 11, 2004
    Applicant: Metrologic Instruments, Inc.
    Inventors: Carl H. Knowles, George B. Rockstein, David M. Wilz, Stephen J. Colavito, Gennady Germaine
  • Patent number: 6688527
    Abstract: A code symbol reading device includes a portable housing that contains a source of optical energy. This optical energy is projected into a scan field external to the housing and is incident upon a code symbol situated on an object located within the scan field. Optical energy reflected off the code symbol is detected within the housing to produce scan data that is indicative of the detected optical energy. The scan data is processed to detect and decode the code symbol and to produce symbol character data that are representative of the decoded code symbol. A data packet utilizing the symbol character data is constructed and then used to modulate an electromagnetic carrier signal that is transmitted to a base unit. At the base unit, the carrier signal is demodulated and the data packet is recovered. The received data packet is processed to recover the symbol character data, and an acknowledgment signal is generated to acknowledge the receipt of the symbol character data at the base unit.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: February 10, 2004
    Assignee: Metrologic Instruments, Inc.
    Inventors: Carl H. Knowles, George B. Rockstein, David M. Wilz, Sr., Stephen J. Colavito, Gennady Germaine