Patents by Inventor Stephen Neil Vaughn

Stephen Neil Vaughn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7914760
    Abstract: A silicoaluminophosphate molecular sieve is disclosed that comprises first and second intergrown phases of a CHA framework type and an AEI framework type, wherein said first intergrown phase has an AEI/CHA ratio of from about 5/95 to about 40/60 as determined by DIFFaX analysis, the second intergrown phase has an AEI/CHA ratio of about 30/70 to about as determined by DIFFaX analysis and said molecular sieve has a silica to alumina molar ratio (Si/Al2) from about 0.13 to about 0.24.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: March 29, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, An Verberckmoes, Marcel J. Janssen, Yun Feng Chang, Luc R. M. Martens, Stephen Neil Vaughn, Kenneth Ray Clem, Wilfried J. Mortier
  • Patent number: 7622624
    Abstract: A silicoaluminophosphate molecular sieve is disclosed that comprises first and second intergrown phases of a CHA framework type and an AEI framework type, wherein said first intergrown phase has an AEI/CHA ratio of from about 5/95 to about 40/60 as determined by DIFFaX analysis, the second intergrown phase has an AEI/CHA ratio of about 30/70 to about 55/45 as determined by DIFFaX analysis and said molecular sieve has a silica to alumina molar ratio (Si/Al2) from about 0.13 to about 0.24.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: November 24, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Machteld M. Mertens, An Verberckmoes, Marcel J. Janssen, Yun Feng Chang, Luc R. M. Martens, Stephen Neil Vaughn, Kenneth Ray Clem, Wilfried J. Mortier
  • Patent number: 7619128
    Abstract: This invention is directed to methods of converting oxygenates to olefin products. The methods provided include steps for protecting against deactivation of active molecular sieve catalysts during the conversion process. In particular, the invention provides for methods of regenerating coked catalyst to minimize catalyst deactivation due to contact with moisture.
    Type: Grant
    Filed: March 25, 2005
    Date of Patent: November 17, 2009
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen Neil Vaughn, Kenneth R. Clem, James H. Beech, Jr., Pete N. Loezos
  • Patent number: 7465845
    Abstract: This invention is directed to a process for converting oxygenate to olefin product at an increased prime olefin selectivity (i.e., increased ethylene and/or propylene content) compared to conventional systems. The increase in ethylene and/or propylene content of the produced olefin product is accomplished using a reaction system that has at least two stages. Any number of stages can used in the entire process, as long as there are at least two stages in series and the temperature of any subsequent stage in series is lower than that of the preceding stage.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: December 16, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen Neil Vaughn
  • Patent number: 7453020
    Abstract: A catalyst composition that comprises an over flocculated molecular sieve and optionally, a phosphorous compound and, optionally, a non-over flocculated molecular sieve. A method of preparing a catalyst composition that comprises mixing an over flocculated molecular sieve and optionally, a phosphorous compound and, optionally, a non-over flocculated molecular sieve.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: November 18, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun Feng Chang, Luc R. M. Martens, Stephen Neil Vaughn
  • Patent number: 7449611
    Abstract: A catalyst composition that comprises an over flocculated molecular sieve and a phosphorous compound and, optionally, a non-over flocculated molecular sieve. A method of preparing a catalyst composition that comprises mixing an over flocculated molecular sieve and a phosphorous compound and, optionally, a non-over flocculated molecular sieve.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: November 11, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Yun Feng Chang, Stephen Neil Vaughn
  • Patent number: 7332636
    Abstract: The invention provides low metal content molecular sieve catalyst compositions, processes for making such catalysts, and processes for using such catalysts in the conversion of an oxygenate into one or more light olefins. Preferably, the catalyst composition comprises a matrix material having a low metal content. By utilizing matrix materials having low metal contents, the amount of metal-catalyzed side reaction byproducts formed in a reaction system, particularly in an oxygenate-to-olefin reaction system, can be advantageously reduced.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: February 19, 2008
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen Neil Vaughn, Richard B. Hall, Kenneth Ray Clem, Jack W. Johnson
  • Patent number: 7309806
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: December 18, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 7276149
    Abstract: The invention is directed to methods of shutting down reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of stopping feed to the reactor and unloading catalyst to protect against loss of catalytic activity that can occur due to contact with water molecules.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: October 2, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Richard E. Walter, Shun Chong Fung, Peter N. Loezos, Marcel Johannes Janssen, Stephen Neil Vaughn
  • Patent number: 7259287
    Abstract: The invention is directed to methods of starting up reaction systems. The reaction systems are those that use catalysts that comprise molecular sieves, particularly metalloaluminophosphate molecular sieves, especially metalloaluminophosphate molecular sieves which are susceptible to loss of catalytic activity due to contact with water molecules. The methods provide appropriate mechanisms of heating and loading the activated molecular sieves to protect against loss of catalytic activity that can occur due to contact with water molecules.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: August 21, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James H. Beech, Richard E. Walter, Shun Chong Fung, Peter N. Loezos, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem, Stephen Neil Vaughn
  • Patent number: 7223896
    Abstract: This invention provides processes for maintaining a desired particle size distribution in an oxygenate to olefin reaction system. In one embodiment, the invention comprises replacing lost catalyst fines with less active co-catalyst particles. By adding less active co-catalyst particles to the reaction system, desirable fluidization characteristics and hydrodynamics can be maintained without affecting the overall (or primary catalyst) performance and product selectivities. The invention is also directed to a population of catalyst particles having a desirable particle size distribution well-suited for realizing ideal fluidization and hydrodynamic characteristics.
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: May 29, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Luc R. M. Martens, James R. Lattner, Rutton D. Patel, David C. Skouby, Stephen Neil Vaughn, Yun-feng Chang, Jesse F. Goellner, Mareel J. Janssen, Richard C. Senior
  • Patent number: 7125821
    Abstract: The invention provides low metal content molecular sieve catalyst compositions, processes for making such catalysts, and processes for using such catalysts in the conversion of an oxygenate into one or more light olefins. Preferably, the catalyst composition comprises a matrix material having a low metal content. By utilizing matrix materials having low metal contents, the amount of metal-catalyzed side reaction byproducts formed in a reaction system, particularly in an oxygenate-to-olefin reaction system, can be advantageously reduced.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: October 24, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Stephen Neil Vaughn, Richard B. Hall, Kenneth Ray Clem, Jack W. Johnson
  • Patent number: 7090081
    Abstract: The present invention provides various processes for selectively removing undesirably sized catalyst particles from a reaction system. In one embodiment, a plurality of catalyst particles, having a first median particle diameter, is withdrawn from the reaction system and is directed to a separation unit such as a counter flow cyclone separator. In the separation unit, the particles are separated into a small catalyst stream and a large catalyst stream, the small catalyst stream having a second median particle diameter less than the first median particle diameter, and the large catalyst stream having a third median particle diameter greater than the first median particle diameter. At least a portion of the small or large catalyst stream is then directed back to the reaction system in order to maintain a desirable particle size distribution therein.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: August 15, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Stephen Neil Vaughn, Kenneth Ray Clem, Keith Holroyd Kuechler, James R. Lattner
  • Patent number: 7053260
    Abstract: The present invention provides a process for making an olefin product from an oxygenate feedstock which comprises: a) contacting the feedstock in a reaction zone with a catalyst comprising i) a molecular sieve having defined pore openings and ii) a CO oxidation metal, under conditions effective to convert the feedstock into an olefin product stream comprising C2–C3 olefins and to form carbonaceous deposits on the catalyst so as to provide a carbon-containing catalyst; b) contacting at least a portion of the carbon-containing catalyst with a regeneration medium comprising oxygen in a regeneration zone comprising a fluid bed regenerator having a dense fluid phase and a dilute fluid phase under conditions effective to obtain a regenerated catalyst portion, wherein the difference between the temperature of the dilute phase and the temperature of the dense phase is no greater than 100° C.; c) introducing said regenerated catalyst portion into said reaction zone; and d) repeating steps a)–c).
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: May 30, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Teng Xu, Paul N. Chisholm, Stephen Neil Vaughn, Shun Chong Fung, Keith Holroyd Kuechler, James R. Lattner, Kenneth Ray Clem, Patrick J. Maher, Dean C. Draemel
  • Patent number: 7015174
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: March 21, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Patent number: 6897179
    Abstract: Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.
    Type: Grant
    Filed: June 13, 2003
    Date of Patent: May 24, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Shun Chong Fung, Stephen Neil Vaughn, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem
  • Publication number: 20040260140
    Abstract: The invention is directed to methods for protecting metalloaluminophosphate molecular sieves, particularly silicoaluminophosphate (SAPO) molecular sieves, from loss of catalytic activity due to contact with a gas containing water. The methods of the invention provide procedures that enable activated sieve to contact water vapor, within a certain range of time, temperature, and water partial pressure conditions, before the sieve becomes substantially deactivated.
    Type: Application
    Filed: June 20, 2003
    Publication date: December 23, 2004
    Inventors: Peter N. Loezos, Shun Chong Fung, Stephen Neil Vaughn, Kenneth Ray Clem, James H. Beech, Nicolas P. Coute, Marcel Johannes Janssen, Luc Roger Marc Martens, Karl G. Strohmaier
  • Publication number: 20040254068
    Abstract: Disclosed is a method of protecting the loss of catalytic activity of metalloaluminophosphate molecular sieve, particularly a SAPO molecular sieve, from contact with moisture. The method involves heating the metalloaluminophosphate molecular sieve so as to remove template, and provide a molecular sieve in sufficiently dry form for storage.
    Type: Application
    Filed: June 13, 2003
    Publication date: December 16, 2004
    Inventors: Shun Chong Fung, Stephen Neil Vaughn, Marcel Johannes Janssen, Luc Roger Marc Martens, Kenneth Ray Clem
  • Patent number: 6809227
    Abstract: A method for increasing light olefin yield during conversion of oxygenates to olefins including contacting an oxygenate feed in a primary reactor with a non-zeolitic molecular sieve catalyst under first conditions effective to produce a first product comprising light olefins; separating the first product into light olefins and a heavy hydrocarbon fraction; feeding the heavy hydrocarbon fraction to a separate auxiliary reactor; and, subjecting the heavy hydrocarbon fraction to second conditions effective to convert at least a portion of the heavy hydrocarbons to light olefins.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: October 26, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Stephen Neil Vaughn
  • Publication number: 20040105787
    Abstract: The present invention relates to methods for selectively converting oxygenates to light olefins, preferably ethylene and propylene, in which desirable carbonaceous deposits are maintained on a total reaction volume of catalyst by totally regenerating only a portion of the total reaction volume of catalyst and mixing the regenerated portion with the unregenerated total reaction volume of catalyst.
    Type: Application
    Filed: July 9, 2003
    Publication date: June 3, 2004
    Inventors: James Richardson Lattner, Hsiang-Ning Sun, Stephen Neil Vaughn, Keith H. Kuechler, David C. Skouby