Patents by Inventor Stephen W. Bedell

Stephen W. Bedell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12068477
    Abstract: A method of forming a solid-state lithium ion rechargeable battery may include depositing a metal layer onto a top surface of a substrate, depositing a handle layer onto a top surface of the metal layer, wherein a portion of the handle layer overlaps the metal layer and the substrate, spalling a portion of the substrate thereby forming a spalled substrate layer, porosifying the spalled substrate layer thereby forming a porous substrate layer, depositing an electrolyte layer onto a top surface of the porous substrate layer, wherein the electrolyte layer is in direct contact with the porous substrate layer, and depositing a cathode onto a top surface of the electrolyte layer. The method may include depositing a cathode contact layer onto a top surface of the cathode, wherein the cathode contact layer is in direct contact with the cathode. The porous substrate layer may be made of silicon.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: August 20, 2024
    Assignee: International Business Machines Corporation
    Inventors: Devendra K. Sadana, Stephen W. Bedell, Joel P. de Souza, John Collins
  • Patent number: 12059263
    Abstract: A method includes implanting an implantable biosensor within a subject where the implantable biosensor has an array of light sources and an array of light detectors, activating the array of light sources to direct light signals at a targeted tissue site in the subject, capturing, with the light detectors, the light signals reflected off the targeted site, calculating a roundtrip propagation time for each of the light signals and comparing the roundtrip propagation time for each of the light signals against previous calculated respective roundtrip propagation times to determine an occurrence of a change in the targeted tissue site.
    Type: Grant
    Filed: July 26, 2023
    Date of Patent: August 13, 2024
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Devendra K. Sadana, Stephen W. Bedell
  • Publication number: 20240255103
    Abstract: Systems and techniques that facilitate scalable thermal energy recycling for cryogenic systems are provided. In various embodiments, a system can comprise at least one cryostat. In various aspects, the system can further comprise a thermal battery coupled to the at least one cryostat by a thermal exchange system. In various instances, the thermal battery can be configured to store thermal energy extracted from the at least one cryostat or to supply thermal energy to the at least one cryostat.
    Type: Application
    Filed: January 30, 2023
    Publication date: August 1, 2024
    Inventors: Stephen W. Bedell, Patryk Gumann, William Thomas Spratt, David Zarsky, Gilbert Bauer
  • Patent number: 12052936
    Abstract: A gated Josephson junction includes a substrate and a vertical Josephson junction formed on the substrate and extending substantially normal the substrate. The vertical Josephson junction includes a first superconducting layer, a semiconducting layer, and a second superconducting layer. The first superconducting layer, the semiconducting layer, and the second superconducting layer form a stack that is substantially perpendicular to the substrate. The gated Josephson junction includes a gate dielectric layer in contact with the first superconducting layer, the semiconducting layer, and the second superconducting layer at opposing side surfaces of the vertical Josephson junction, and a gate electrically conducting layer in contact with the gate dielectric layer. The gate electrically conducting layer is separated from the vertical Josephson junction by the gate dielectric layer.
    Type: Grant
    Filed: December 29, 2022
    Date of Patent: July 30, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Devendra K. Sadana, Ning Li, Stephen W. Bedell, Sean Hart, Patryk Gumann
  • Patent number: 12041859
    Abstract: A method of producing a quantum circuit includes forming a mask on a substrate to cover a first portion of the substrate, implanting a second portion of the substrate with ions, and removing the mask, thereby providing a nanowire. The method further includes forming a first lead and a second lead, the first lead and the second lead each partially overlapping the nanowire. In operation, a portion of the nanowire between the first and second leads forms a quantum dot, thereby providing a quantum dot Josephson junction. The method further includes forming a third lead and a fourth lead, one of the third and fourth leads partially overlapping the nanowire, wherein the third lead is separated from the fourth lead by a dielectric layer, thereby providing a Dolan bridge Josephson junction. The nanowire is configured to connect the quantum dot Josephson junction and the Dolan bridge Josephson junction in series.
    Type: Grant
    Filed: March 29, 2023
    Date of Patent: July 16, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, Ning Li, Stephen W. Bedell
  • Publication number: 20240200846
    Abstract: Systems and/or methods provided herein relate to cooling of a component within a chamber of a cryostat. A system can comprise a cryostat having a cooling plate disposed within the cryostat, and a cooling feed line extending into the cryostat from external to the cryostat, which cooling feed line is thermally coupled to the cooling plate by a heat exchanger. In one or more embodiments, the system further can comprise a bulk cooling system that employs a liquifiable gas to provide cooling, wherein the bulk cooling system is fluidly coupled to the cooling feed line. In one or more embodiments, the system further can comprise a vacuum pump disposed at the cooling return line and external to the cryostat and physically decoupled from the cryostat by a section of the cooling return line disposed between the cryostat and the vacuum pump.
    Type: Application
    Filed: December 14, 2022
    Publication date: June 20, 2024
    Inventors: Patryk Gumann, William Thomas Spratt, Stephen W. Bedell, Gilbert Bauer, David Zarsky
  • Patent number: 11948985
    Abstract: Devices, systems, methods, computer-implemented methods, apparatus, and/or computer program products that can facilitate a suspended Majorana fermion device comprising an ion implant defined nanorod in a semiconducting device are provided. According to an embodiment, a quantum computing device can comprise a Majorana fermion device coupled to an ion implanted region. The quantum computing device can further comprise an encapsulation film coupled to the ion implanted region and a substrate layer. The encapsulation film suspends the Majorana fermion device in the quantum computing device.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: April 2, 2024
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, Sean Hart, Patryk Gumann, Stephen W. Bedell, Ning Li
  • Patent number: 11864906
    Abstract: A method includes implanting an implantable biosensor within a subject where the implantable biosensor has an array of light sources and an array of light detectors, activating the array of light sources to direct light signals at a targeted tissue site in the subject, capturing, with the light detectors, the light signals reflected off the targeted site, calculating a roundtrip propagation time for each of the light signals and comparing the roundtrip propagation time for each of the light signals against previous calculated respective roundtrip propagation times to determine an occurrence of a change in the targeted tissue site.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: January 9, 2024
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Devendra K. Sadana, Stephen W. Bedell
  • Patent number: 11819333
    Abstract: A method includes implanting an implantable biosensor within a subject where the implantable biosensor has an array of light sources and an array of light detectors, activating the array of light sources to direct light signals at a targeted tissue site in the subject, capturing, with the light detectors, the light signals reflected off the targeted site, calculating a roundtrip propagation time for each of the light signals and comparing the roundtrip propagation time for each of the light signals against previous calculated respective roundtrip propagation times to determine an occurrence of a change in the targeted tissue site.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: November 21, 2023
    Assignee: International Business Machines Corporation
    Inventors: Steven J. Holmes, Devendra K. Sadana, Stephen W. Bedell
  • Publication number: 20230363694
    Abstract: A method includes implanting an implantable biosensor within a subject where the implantable biosensor has an array of light sources and an array of light detectors, activating the array of light sources to direct light signals at a targeted tissue site in the subject, capturing, with the light detectors, the light signals reflected off the targeted site, calculating a roundtrip propagation time for each of the light signals and comparing the roundtrip propagation time for each of the light signals against previous calculated respective roundtrip propagation times to determine an occurrence of a change in the targeted tissue site.
    Type: Application
    Filed: July 26, 2023
    Publication date: November 16, 2023
    Inventors: Steven J. Holmes, Devendra K. Sadana, Stephen W. Bedell
  • Publication number: 20230255123
    Abstract: Systems and techniques that facilitate quantum tuning via permanent magnetic flux elements are provided. In various embodiments, a system can comprise a qubit device. In various aspects, the system can further comprise a permanent magnet having a first magnetic flux, wherein an operational frequency of the qubit device is based on the first magnetic flux. In various instances, the system can further comprise an electromagnet having a second magnetic flux that tunes the first magnetic flux. In various cases, the permanent magnet can comprise a nanoparticle magnet. In various embodiments, the nanoparticle magnet can comprise manganese nanoparticles embedded in a silicon matrix. In various aspects, the system can further comprise an electrode that applies an electric current to the nanoparticle magnet in a presence of the second magnetic flux, thereby changing a strength of the first magnetic flux.
    Type: Application
    Filed: March 29, 2023
    Publication date: August 10, 2023
    Inventors: Steven J. Holmes, Devendra K. Sadana, David C. Mckay, Jared Barney Hertzberg, Stephen W. Bedell, Ning Li
  • Publication number: 20230247917
    Abstract: A method of producing a quantum circuit includes forming a mask on a substrate to cover a first portion of the substrate, implanting a second portion of the substrate with ions, and removing the mask, thereby providing a nanowire. The method further includes forming a first lead and a second lead, the first lead and the second lead each partially overlapping the nanowire. In operation, a portion of the nanowire between the first and second leads forms a quantum dot, thereby providing a quantum dot Josephson junction. The method further includes forming a third lead and a fourth lead, one of the third and fourth leads partially overlapping the nanowire, wherein the third lead is separated from the fourth lead by a dielectric layer, thereby providing a Dolan bridge Josephson junction. The nanowire is configured to connect the quantum dot Josephson junction and the Dolan bridge Josephson junction in series.
    Type: Application
    Filed: March 29, 2023
    Publication date: August 3, 2023
    Inventors: Steven J. Holmes, Devendra K. Sadana, Ning Li, Stephen W. Bedell
  • Patent number: 11697889
    Abstract: A structure including a three-dimensionally stretchable single crystalline semiconductor membrane located on a substrate is provided. The structure is formed by providing a three-dimensional (3D) wavy silicon germanium alloy layer on a silicon handler substrate. A single crystalline semiconductor material membrane is then formed on a physically exposed surface of the 3D wavy silicon germanium alloy layer. A substrate is then formed on a physically exposed surface of the single crystalline semiconductor material membrane. The 3D wavy silicon germanium alloy layer and the silicon handler substrate are thereafter removed providing the structure.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: July 11, 2023
    Assignee: International Business Machines Corporation
    Inventors: Alexander Reznicek, Karthik Balakrishnan, Stephen W. Bedell, Pouya Hashemi, Bahman Hekmatshoartabari, Keith E. Fogel
  • Publication number: 20230210018
    Abstract: A vertical Josephson Junction (JJ) qubit device that is fabricated from crystalline silicon material is provided. The JJ device has a substrate of epitaxial silicon, a lower superconducting electrode that is a superconducting region of the epitaxial silicon and an upper superconducting electrode of a metallic superconductor. The JJ device also has a junction layer. A section of the junction layer between the lower and upper superconducting electrodes forms a junction of the JJ device. Resonator and/or capacitor wiring of the JJ device is also fabricated using the metallic superconductor. The superconducting region is epitaxial silicon that is doped or implanted with boron or gallium. The substrate, the junction layer, and the implanted epitaxial silicon share a contiguous crystalline structure.
    Type: Application
    Filed: December 28, 2021
    Publication date: June 29, 2023
    Inventors: Steven J. Holmes, Devendra K. Sadana, Oleg Gluschenkov, Stephen W. Bedell
  • Patent number: 11672187
    Abstract: Systems and techniques that facilitate quantum tuning via permanent magnetic flux elements are provided. In various embodiments, a system can comprise a qubit device. In various aspects, the system can further comprise a permanent magnet having a first magnetic flux, wherein an operational frequency of the qubit device is based on the first magnetic flux. In various instances, the system can further comprise an electromagnet having a second magnetic flux that tunes the first magnetic flux. In various cases, the permanent magnet can comprise a nanoparticle magnet. In various embodiments, the nanoparticle magnet can comprise manganese nanoparticles embedded in a silicon matrix. In various aspects, the system can further comprise an electrode that applies an electric current to the nanoparticle magnet in a presence of the second magnetic flux, thereby changing a strength of the first magnetic flux.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: June 6, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra K. Sadana, David C. McKay, Jared Barney Hertzberg, Stephen W. Bedell, Ning Li
  • Patent number: 11665981
    Abstract: A method of producing a quantum circuit includes forming a mask on a substrate to cover a first portion of the substrate, implanting a second portion of the substrate with ions, and removing the mask, thereby providing a nanowire. The method further includes forming a first lead and a second lead, the first lead and the second lead each partially overlapping the nanowire. In operation, a portion of the nanowire between the first and second leads forms a quantum dot, thereby providing a quantum dot Josephson junction. The method further includes forming a third lead and a fourth lead, one of the third and fourth leads partially overlapping the nanowire, wherein the third lead is separated from the fourth lead by a dielectric layer, thereby providing a Dolan bridge Josephson junction. The nanowire is configured to connect the quantum dot Josephson junction and the Dolan bridge Josephson junction in series.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: May 30, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steven J. Holmes, Devendra V Sadana, Ning Li, Stephen W. Bedell
  • Publication number: 20230133709
    Abstract: A gated Josephson junction includes a substrate and a vertical Josephson junction formed on the substrate and extending substantially normal the substrate. The vertical Josephson junction includes a first superconducting layer, a semiconducting layer, and a second superconducting layer. The first superconducting layer, the semiconducting layer, and the second superconducting layer form a stack that is substantially perpendicular to the substrate. The gated Josephson junction includes a gate dielectric layer in contact with the first superconducting layer, the semiconducting layer, and the second superconducting layer at opposing side surfaces of the vertical Josephson junction, and a gate electrically conducting layer in contact with the gate dielectric layer. The gate electrically conducting layer is separated from the vertical Josephson junction by the gate dielectric layer.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Inventors: Devendra K. Sadana, Ning Li, Stephen W. Bedell, Sean Hart, Patryk Gumann
  • Publication number: 20230116053
    Abstract: Compound semiconductor and silicon-based structures are epitaxially formed on semiconductor substrates and transferred to a carrier substrate. The transferred structures can be used to form discrete photovoltaic and light-emitting devices on the carrier substrate. Silicon-containing layers grown on doped donor semiconductor substrates and compound semiconductor layers grown on off-cut semiconductor substrates form elements of the devices. The carrier substrates may be electrically insulating substrates or include electrically insulating layers to which photovoltaic and/or light-emitting structures are bonded.
    Type: Application
    Filed: September 29, 2021
    Publication date: April 13, 2023
    Inventors: Devendra K. Sadana, Ning Li, Ghavam G. Shahidi, Frank Robert Libsch, Stephen W. Bedell
  • Patent number: 11588210
    Abstract: Methods of forming a controllable resistive element include forming source and drain regions in a substrate. A battery stack is formed on a substrate between the source and drain regions. Respective anode and cathode electrical connections are formed to the battery stack. Respective source and drain electrical connections are formed.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: February 21, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Joel P. De Souza, Yun Seog Lee, Ning Li, Devendra K. Sadana
  • Patent number: 11581472
    Abstract: A gated Josephson junction includes a substrate and a vertical Josephson junction formed on the substrate and extending substantially normal the substrate. The vertical Josephson junction includes a first superconducting layer, a semiconducting layer, and a second superconducting layer. The first superconducting layer, the semiconducting layer, and the second superconducting layer form a stack that is substantially perpendicular to the substrate. The gated Josephson junction includes a gate dielectric layer in contact with the first superconducting layer, the semiconducting layer, and the second superconducting layer at opposing side surfaces of the vertical Josephson junction, and a gate electrically conducting layer in contact with the gate dielectric layer. The gate electrically conducting layer is separated from the vertical Josephson junction by the gate dielectric layer.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: February 14, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Devendra K. Sadana, Ning Li, Stephen W. Bedell, Sean Hart, Patryk Gumann