Patents by Inventor Steven Joseph Gregorski

Steven Joseph Gregorski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250147240
    Abstract: A fiber array unit, and a method and apparatus for fabricating the fiber array unit. The fiber array unit includes optical fibers that define a two-dimensional array of fiber end faces, and are encapsulated by a matrix that holds the optical fibers in place. The fiber array unit is fabricated by seating optical fibers in grooves of an arcuate surface, and applying an amount of uncured matrix thereto. A substrate is moved into contact with the matrix and the matrix cured to bond the optical fibers to each other and the substrate. The substrate is moved away from the arcuate surface to release the bonded optical fibers. The process can be repeated to fabricate a fiber array unit having multiple rows of optical fibers.
    Type: Application
    Filed: November 7, 2023
    Publication date: May 8, 2025
    Inventors: Steven Joseph Gregorski, Qi Wu
  • Publication number: 20250123445
    Abstract: Matched fiber optic connectors are formed by aligning separate fiber bodies and then cutting optical fibers secured in the separate fiber bodies. The matched pair of fiber optic connectors are capable of supporting high-fiber count connectivity. The process includes placing optical fibers into a first fiber body aligned with a second fiber body with the optical fibers traversing a predetermined gap between the first end face and the second end face of the fiber bodies and securing the optical fibers to the fiber bodies using an adhesive. The optical fibers are cut at the predetermined gap between the aligned end faces of respective fiber bodies, thereby creating a first fiber optic connector having the first ends of the cut optical fibers matched and suitable for optical mating with the second ends of the cut optical fibers in a second fiber optic connector.
    Type: Application
    Filed: October 17, 2024
    Publication date: April 17, 2025
    Inventors: Timothy Winston Anderson, Lars Martin Otfried Brusberg, Davide Domenico Fortusini, Steven Joseph Gregorski, Randy LaRue McClure, Peter J. Tuscany, Todd Marshall Wetherill, Pierre Beneke, Eric James Paulus
  • Patent number: 11840473
    Abstract: A method of manufacturing an optical fiber, the method including drawing a bare optical fiber from an optical fiber preform along a draw pathway. The method further includes during the drawing step, moving a first fluid bearing from a first position to a second position, the first position being removed from the draw pathway and the second position being disposed in the draw pathway such that the movement of the first fluid bearing to the second position causes at least a first portion of the draw pathway to change direction.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: December 12, 2023
    Assignee: Corning Incorporated
    Inventors: Steven Joseph Gregorski, Kenneth Spencer Morgan, Richard Alan Quinn, Bradley Kent Shepard, John Christopher Thomas, David Andrew Tucker
  • Publication number: 20220073408
    Abstract: A method of manufacturing an optical fiber, the method including drawing a bare optical fiber from an optical fiber preform along a draw pathway. The method further includes during the drawing step, moving a first fluid bearing from a first position to a second position, the first position being removed from the draw pathway and the second position being disposed in the draw pathway such that the movement of the first fluid bearing to the second position causes at least a first portion of the draw pathway to change direction.
    Type: Application
    Filed: August 25, 2021
    Publication date: March 10, 2022
    Inventors: Steven Joseph Gregorski, Kenneth Spencer Morgan, Richard Alan Quinn, Bradley Kent Shepard, John Christopher Thomas, David Andrew Tucker
  • Patent number: 10295747
    Abstract: Systems and methods for scribing and cleaving an optical fiber held by a ferrule are disclosed. The methods include operably supporting an optical fiber in a ferrule so that a bare fiber section of the optical fiber extends beyond a front end of the ferrule. The method also includes disposing a top-side location of a scribing medium to be in contact with a lower portion of the bare fiber section and a near-side location of the scribing medium to be in contact with the front end of the ferrule. The top-side location includes an abrasive feature while the near-side location is smooth. The scribing medium is moved relative to the bare fiber section to cause the abrasive feature to form a scribe mark at a scribe location at a distance from the front end of the ferrule. The smooth near-side location prevents substantial damage to the ferrule front end.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: May 21, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: Steven Joseph Gregorski
  • Patent number: 10101540
    Abstract: A portion of a core of an optical fiber may be positioned eccentrically in a bore of a ferrule. The portion of the core may be part of an asymmetric cross-sectional region of the optical fiber, and the asymmetric cross-sectional region may include an asymmetric outer surface. The asymmetric outer surface may include an inclined portion spaced outwardly from the portion of the core in a first direction. There may be contact between the inclined portion and the ferrule, so that a lengthwise axis of the portion of the core is spaced apart from a lengthwise axis of the bore in a second direction, and the first and second directions extend substantially opposite from one another.
    Type: Grant
    Filed: October 5, 2016
    Date of Patent: October 16, 2018
    Assignee: Corning Optical Communications LLC
    Inventor: Steven Joseph Gregorski
  • Patent number: 10071497
    Abstract: Lengths of an optical fiber may be broken apart from one another while a cross-sectional region of the optical fiber is in a state of multi-axial compressive stress, and the multi-axial compressive stress extends across the optical fiber. The breaking can include propagating a crack across the optical fiber. The crack can be positioned in sufficiently close proximity to the cross-sectional region so that the multi-axial compressive stress restricts the crack from penetrating the cross-sectional region. At least a portion of the optical fiber may be in tension during the breaking.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: September 11, 2018
    Assignee: Corning Optical Communications LLC
    Inventor: Steven Joseph Gregorski
  • Publication number: 20170246756
    Abstract: Lengths of an optical fiber may be broken apart from one another while a cross-sectional region of the optical fiber is in a state of multi-axial compressive stress, and the multi-axial compressive stress extends across the optical fiber. The breaking can include propagating a crack across the optical fiber. The crack can be positioned in sufficiently close proximity to the cross-sectional region so that the multi-axial compressive stress restricts the crack from penetrating the cross-sectional region. At least a portion of the optical fiber may be in tension during the breaking.
    Type: Application
    Filed: May 17, 2017
    Publication date: August 31, 2017
    Inventor: Steven Joseph Gregorski
  • Publication number: 20170176692
    Abstract: A portion of a core of an optical fiber may be positioned eccentrically in a bore of a ferrule. The portion of the core may be part of an asymmetric cross-sectional region of the optical fiber, and the asymmetric cross-sectional region may include an asymmetric outer surface. The asymmetric outer surface may include an inclined portion spaced outwardly from the portion of the core in a first direction. There may be contact between the inclined portion and the ferrule, so that a lengthwise axis of the portion of the core is spaced apart from a lengthwise axis of the bore in a second direction, and the first and second directions extend substantially opposite from one another.
    Type: Application
    Filed: October 5, 2016
    Publication date: June 22, 2017
    Inventor: Steven Joseph Gregorski
  • Publication number: 20170139138
    Abstract: Systems and methods for scribing and cleaving an optical fiber held by a ferrule are disclosed. The methods include operably supporting an optical fiber in a ferrule so that a bare fiber section of the optical fiber extends beyond a front end of the ferrule. The method also includes disposing a top-side location of a scribing medium to be in contact with a lower portion of the bare fiber section and a near-side location of the scribing medium to be in contact with the front end of the ferrule. The top-side location includes an abrasive feature while the near-side location is smooth. The scribing medium is moved relative to the bare fiber section to cause the abrasive feature to form a scribe mark at a scribe location at a distance from the front end of the ferrule. The smooth near-side location prevents substantial damage to the ferrule front end.
    Type: Application
    Filed: May 4, 2016
    Publication date: May 18, 2017
    Inventor: Steven Joseph Gregorski
  • Patent number: 9448185
    Abstract: A system for inspecting a body, which includes a first end side, a second end side, and cells extending through the body from the first end side to the second end side, is provided. The system includes at least one light source configured to project light through and out of at least one corresponding group of the cells, a target configured to display the light projected through and out of the at least one corresponding group of the cells, an imaging system configured to determine at least one location of the displayed light on the target, and a system processor configured to compare the determined at least one location of the displayed light with a location of the at least one light source and calculate, from the comparison thereof, at least one of a pointing angle and a pointing vector for the at least one corresponding group of the cells.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: September 20, 2016
    Assignee: Corning Incorporated
    Inventor: Steven Joseph Gregorski
  • Publication number: 20150346114
    Abstract: A system for inspecting a body, which includes a first end side, a second end side, and cells extending through the body from the first end side to the second end side, is provided. The system includes at least one light source configured to project light through and out of at least one corresponding group of the cells, a target configured to display the light projected through and out of the at least one corresponding group of the cells, an imaging system configured to determine at least one location of the displayed light on the target, and a system processor configured to compare the determined at least one location of the displayed light with a location of the at least one light source and calculate, from the comparison thereof, at least one of a pointing angle and a pointing vector for the at least one corresponding group of the cells.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 3, 2015
    Applicant: Corning Incorporated
    Inventor: Steven Joseph Gregorski
  • Patent number: 9151905
    Abstract: Embodiments disclosed herein include pre-terminated fiber optic connector sub-assemblies, and related fiber optic connectors, cables, and methods. In certain embodiments, an optical fiber stub is pre-installed in a ferrule bore of a ferrule of a fiber optic connector sub-assembly, to provide the pre-terminated fiber optic connector sub-assembly. The optical fiber stub can be pre-installed in the ferrule bore prior to termination of the fiber optic connector sub-assembly. Because the pre-terminated optical fiber stub disposed in the ferrule bore is not directly accessible through a ferrule body of the ferrule when a field optical fiber is disposed in the ferrule bore for fusion splicing, the ferrule has properties that allow thermal energy to be directed through the ferrule body into the ferrule bore. In this manner, the optical fiber stub pre-installed in the ferrule bore can be fusion spliced with the field optical fiber to terminate a fiber optic cable.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: October 6, 2015
    Assignee: Corning Optical Communications LLC
    Inventors: Anthony Sebastian Bauco, Jeffrey Dean Danley, Robert Bruce Elkins, II, Steven Joseph Gregorski
  • Patent number: 9144917
    Abstract: Lengths of an optical fiber may be broken apart from one another while a cross-sectional region of the optical fiber is in a state of multi-axial compressive stress, and the multi-axial compressive stress extends across the optical fiber. The breaking can include propagating a crack across the optical fiber. The crack can be positioned in sufficiently close proximity to the cross-sectional region so that the multi-axial compressive stress restricts the crack from penetrating the cross-sectional region. At least a portion of the optical fiber may be in tension during the breaking.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: September 29, 2015
    Assignee: Corning Optical Communications LLC
    Inventor: Steven Joseph Gregorski
  • Publication number: 20150241638
    Abstract: Embodiments disclosed herein include pre-terminated fiber optic connector sub-assemblies, and related fiber optic connectors, cables, and methods. In certain embodiments, an optical fiber stub is pre-installed in a ferrule bore of a ferrule of a fiber optic connector sub-assembly, to provide the pre-terminated fiber optic connector sub-assembly. The optical fiber stub can be pre-installed in the ferrule bore prior to termination of the fiber optic connector sub-assembly. Because the pre-terminated optical fiber stub disposed in the ferrule bore is not directly accessible through a ferrule body of the ferrule when a field optical fiber is disposed in the ferrule bore for fusion splicing, the ferrule has properties that allow thermal energy to be directed through the ferrule body into the ferrule bore. In this manner, the optical fiber stub pre-installed in the ferrule bore can be fusion spliced with the field optical fiber to terminate a fiber optic cable.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 27, 2015
    Inventors: Anthony Sebastian Bauco, Jeffrey Dean Danley, Robert Bruce Elkins, II, Steven Joseph Gregorski
  • Patent number: 9052469
    Abstract: Embodiments disclosed herein include pre-terminated fiber optic connector sub-assemblies, and related fiber optic connectors, cables, and methods. In certain embodiments, an optical fiber stub is pre-installed in a ferrule bore of a ferrule of a fiber optic connector sub-assembly, to provide the pre-terminated fiber optic connector sub-assembly. The optical fiber stub can be pre-installed in the ferrule bore prior to termination of the fiber optic connector sub-assembly. Because the pre-terminated optical fiber stub disposed in the ferrule bore is not directly accessible through a ferrule body of the ferrule when a field optical fiber is disposed in the ferrule bore for fusion splicing, the ferrule has properties that allow thermal energy to be directed through the ferrule body into the ferrule bore. In this manner, the optical fiber stub pre-installed in the ferrule bore can be fusion spliced with the field optical fiber to terminate a fiber optic cable.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: June 9, 2015
    Assignee: Corning Cable Systems LLC
    Inventors: Anthony Sebastian Bauco, Jeffrey Dean Danley, Robert Bruce Elkins, II, Steven Joseph Gregorski
  • Patent number: 8973409
    Abstract: Methods and apparatuses for cooling optical fibers are disclosed. In one embodiment, In some embodiments, a cooling apparatus for cooling an optical fiber in a production process includes a channel defined by at least one sidewall assembly and a plurality of interior cavities positioned along the interior of the sidewall assembly. The interior cavities include at least one plenum, a first plurality of fluid supply cavities in fluid communication with the at least one plenum, and a second plurality of fluid supply cavities in fluid communication with the at least one plenum. Cooling fluid is supplied from the at least one plenum to the first plurality of fluid supply cavities in a first direction and the second plurality of fluid supply cavities in a second direction opposite the first direction.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: March 10, 2015
    Assignee: Corning Incorporated
    Inventors: Steven Joseph Gregorski, John Christopher Thomas, Kevin Lee Wasson
  • Publication number: 20140321812
    Abstract: Embodiments disclosed herein include pre-terminated fiber optic connector sub-assemblies, and related fiber optic connectors, cables, and methods. In certain embodiments, an optical fiber stub is pre-installed in a ferrule bore of a ferrule of a fiber optic connector sub-assembly, to provide the pre-terminated fiber optic connector sub-assembly. The optical fiber stub can be pre-installed in the ferrule bore prior to termination of the fiber optic connector sub-assembly. Because the pre-terminated optical fiber stub disposed in the ferrule bore is not directly accessible through a ferrule body of the ferrule when a field optical fiber is disposed in the ferrule bore for fusion splicing, the ferrule has properties that allow thermal energy to be directed through the ferrule body into the ferrule bore. In this manner, the optical fiber stub pre-installed in the ferrule bore can be fusion spliced with the field optical fiber to terminate a fiber optic cable.
    Type: Application
    Filed: April 26, 2013
    Publication date: October 30, 2014
    Applicant: Corning Cable Systems LLC
    Inventors: Anthony Sebastian Bauco, Jeffrey Dean Danley, Robert Bruce Elkins, Steven Joseph Gregorski
  • Publication number: 20140096565
    Abstract: Methods and apparatuses for cooling optical fibers are disclosed. In one embodiment, In some embodiments, a cooling apparatus for cooling an optical fiber in a production process includes a channel defined by at least one sidewall assembly and a plurality of interior cavities positioned along the interior of the sidewall assembly. The interior cavities include at least one plenum, a first plurality of fluid supply cavities in fluid communication with the at least one plenum, and a second plurality of fluid supply cavities in fluid communication with the at least one plenum. Cooling fluid is supplied from the at least one plenum to the first plurality of fluid supply cavities in a first direction and the second plurality of fluid supply cavities in a second direction opposite the first direction.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Inventors: Steven Joseph Gregorski, John Christopher Thomas, Kevin Lee Wasson
  • Patent number: 8492045
    Abstract: According to one embodiment of the present invention a fuel cell system comprises: (i) a plurality of fuel cell packets, each packet comprising at least one fuel inlet, at least one fuel outlet, a frame, and two multi-cell fuel cell devices, the fuel cell devices situated such that an anode side of one fuel cell device faces an anode side of another fuel cell device, and the two fuel cell devices, in combination, at least partially form a fuel chamber connected to the fuel inlet and the fuel outlet; (ii) a plurality of heat exchange packets, each packet comprising at least one oxidant inlet, at least one oxidant outlet, and an internal oxidant chamber connected to the at least one oxidant inlet and the least one oxidant outlet; the heat exchange packets being parallel to and interspersed between the fuel cell packets, such that the heat exchange packets face the fuel cell packets and form, at least in part, a plurality of cathode reaction chambers between the heat exchange packets and the fuel cell packets; (
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: July 23, 2013
    Assignee: Corning Incorporated
    Inventors: Michael Edward Badding, William Joseph Bouton, Peng Chen, Steven Joseph Gregorski