Patents by Inventor Steven Luther Moyer

Steven Luther Moyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230271483
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Application
    Filed: April 6, 2023
    Publication date: August 31, 2023
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Patent number: 11642943
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Grant
    Filed: October 7, 2022
    Date of Patent: May 9, 2023
    Assignee: Corning Incorporated
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Patent number: 11609382
    Abstract: Presented herein is a tray for shipping, handling, and/or processing optomechanical components. The tray has a plurality of pockets arranged in an array, wherein each pocket is configured to hold one optomechanical component, and wherein each pocket includes at least one fiducial hole, at least one vacuum hole, a first cradle element configured to support a clip that attaches to one or more optical fibers of the optomechanical component, and a second cradle element configured to support a head of the optomechanical component. Also presented herein is a clip for an optomechanical component that includes a body having a top face and a bottom face, and a plurality of gripping elements arranged in pairs on the bottom face, each pair of gripping elements configured to support a barrel of an optical connector attached to a corresponding optical fiber of the pair of optical fibers.
    Type: Grant
    Filed: February 9, 2021
    Date of Patent: March 21, 2023
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Neeraj Kumar Dubey, Adam Jacob Forrer, Steven Luther Moyer, Prakash Gothoskar
  • Publication number: 20230047147
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Application
    Filed: October 7, 2022
    Publication date: February 16, 2023
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Patent number: 11491851
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: November 8, 2022
    Assignee: Corning Incorporated
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Publication number: 20220144047
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Patent number: 11254192
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: February 22, 2022
    Assignee: Corning incorporated
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Publication number: 20210165167
    Abstract: Presented herein is a tray for shipping, handling, and/or processing optomechanical components. The tray has a plurality of pockets arranged in an array, wherein each pocket is configured to hold one optomechanical component, and wherein each pocket includes at least one fiducial hole, at least one vacuum hole, a first cradle element configured to support a clip that attaches to one or more optical fibers of the optomechanical component, and a second cradle element configured to support a head of the optomechanical component. Also presented herein is a clip for an optomechanical component that includes a body having a top face and a bottom face, and a plurality of gripping elements arranged in pairs on the bottom face, each pair of gripping elements configured to support a barrel of an optical connector attached to a corresponding optical fiber of the pair of optical fibers.
    Type: Application
    Filed: February 9, 2021
    Publication date: June 3, 2021
    Inventors: Neeraj Kumar Dubey, Adam Jacob Forrer, Steven Luther Moyer, Prakash Gothoskar
  • Patent number: 10976498
    Abstract: Presented herein is a tray for shipping, handling, and/or processing optomechanical components. The tray has a plurality of pockets arranged in an array, wherein each pocket is configured to hold one optomechanical component, and wherein each pocket includes at least one fiducial hole, at least one vacuum hole, a first cradle element configured to support a clip that attaches to one or more optical fibers of the optomechanical component, and a second cradle element configured to support a head of the optomechanical component. Also presented herein is a clip for an optomechanical component that includes a body having a top face and a bottom face, and a plurality of gripping elements arranged in pairs on the bottom face, each pair of gripping elements configured to support a barrel of an optical connector attached to a corresponding optical fiber of the pair of optical fibers.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: April 13, 2021
    Assignee: CISCO TECHNOLOGY, INC.
    Inventors: Neeraj Kumar Dubey, Adam Jacob Forrer, Steven Luther Moyer, Prakash Gothoskar
  • Publication number: 20210053424
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Application
    Filed: November 10, 2020
    Publication date: February 25, 2021
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Publication number: 20200393624
    Abstract: Presented herein is a tray for shipping, handling, and/or processing optomechanical components. The tray has a plurality of pockets arranged in an array, wherein each pocket is configured to hold one optomechanical component, and wherein each pocket includes at least one fiducial hole, at least one vacuum hole, a first cradle element configured to support a clip that attaches to one or more optical fibers of the optomechanical component, and a second cradle element configured to support a head of the optomechanical component. Also presented herein is a clip for an optomechanical component that includes a body having a top face and a bottom face, and a plurality of gripping elements arranged in pairs on the bottom face, each pair of gripping elements configured to support a barrel of an optical connector attached to a corresponding optical fiber of the pair of optical fibers.
    Type: Application
    Filed: November 26, 2019
    Publication date: December 17, 2020
    Inventors: Neeraj Kumar Dubey, Adam Jacob Forrer, Steven Luther Moyer, Prakash Gothoskar
  • Patent number: 10843531
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: November 24, 2020
    Assignee: CORNING INCORPORATED
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Publication number: 20180281567
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Application
    Filed: June 7, 2018
    Publication date: October 4, 2018
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Patent number: 10017033
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: July 10, 2018
    Assignee: CORNING INCORPORATED
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Publication number: 20170008377
    Abstract: The principles and embodiments of the present disclosure relate generally to complexly curved laminates made from a complexly curved substrate and a flat substrate, such as automotive window glazings, and methods of cold forming complexly-curved glass products from a curved substrate and a flat substrate. In one or more embodiments, the laminate includes first complexly-curved glass substrate with a first surface and a second surface opposite the first surface, a second complexly-curved glass substrate with a third surface and a fourth surface opposite the third surface with a thickness therebetween; and a polymer interlayer affixed to the second convex surface and third surface, wherein the third surface and fourth surface have compressive stress values respectively that differ such that the fourth surface has as compressive stress value that is greater than the compressive stress value of the third surface.
    Type: Application
    Filed: July 7, 2016
    Publication date: January 12, 2017
    Inventors: William Keith Fisher, Mark Stephen Friske, Steven Luther Moyer, Paul George Rickerl
  • Publication number: 20160250982
    Abstract: Embodiments of a laminate exhibiting enhanced acoustic performance are described. In one or more embodiments, the laminate includes a first substrate, an interlayer structure and a second substrate. One or both the first substrate and the second substrate have a thickness less than about 1.5 mm. In one or more embodiments, the interlayer structure includes a first interlayer and a second interlayer, wherein the first interlayer has a lower shear modulus than the second interlayer and is positioned near the center of the laminate (i.e., positioned at a thickness range from about 0.4t to about 0.6t, where t is the laminate thickness). The laminates exhibit a transmission loss of greater than about 38 dB over a frequency range from about 2500 Hz to about 6000 Hz. Vehicles and architectural panels including the laminates described herein are also provided.
    Type: Application
    Filed: February 26, 2016
    Publication date: September 1, 2016
    Inventors: William Keith Fisher, Michael John Moore, Steven Luther Moyer
  • Publication number: 20150122406
    Abstract: A process using a vacuum ring or vacuum bag to produce glass laminates with improved optical distortion and shape consistency using thin glass having a thickness not exceeding 1.0 by using a soak temperatures not exceeding 120° C. or not exceeding 100° C. and a vacuum not exceed about ?0.6 bar. One or more assembled stacks of two glass sheets and a polymer interlayer being laminated may be stacked on a single reference mold and processed simultaneously in a single vacuum bag or vacuum ring. One more thin glass sheets may be placed on top the assembled stack(s) on the reference mold to protect the assembled stack from irregular forces applied by the vacuum bag or the vacuum ring.
    Type: Application
    Filed: June 6, 2013
    Publication date: May 7, 2015
    Inventors: William Keith Fisher, Michael John Moore, Steven Luther Moyer, Huan-Hung Sheng, Larry Gene Smith
  • Publication number: 20150086048
    Abstract: A glass panel is provided having a glass structure with an exterior surface and an interior surface, the glass structure having at least one glass sheet with a thickness ranging from about 0.5 mm to about 2.0 mm and a backing frame positioned adjacent the glass structure and situated along the perimeter of the interior surface of the glass structure. The glass panel further includes a polymer layer positioned on the interior surface and intermediate the glass structure and backing frame to adhere the glass structure together with the backing frame an array of acoustic exciters positioned on the glass structure, the array of acoustic exciters providing excitation energy to or receiving excitation energy from the glass structure where frequency response of the panel can be a function of the geometry of the glass structure and the position of the acoustic exciters.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 26, 2015
    Inventors: Gordon Charles Brown, John Phillip Ertel, David Ralph Maack, Steven Luther Moyer, Christopher Alan Nitz, Zhiqiang Shi