Patents by Inventor Steven M. Bischof

Steven M. Bischof has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10604457
    Abstract: A process comprising a) contacting (i) ethylene, (ii) a catalyst system comprising 1) a heteroatomic ligand iron salt complex, or a heteroatomic ligand and an iron salt, (iii) hydrogen, and (iv) optionally an organic reaction medium; and b) forming an oligomer product wherein 1) the oligomer product has a Schulz-Flory K value from 0.4 to 0.8 and 2) the oligomer product comprises (a) less than 1 wt. % of polymer, (b) less than 1 wt. % compounds having greater than 70 carbon atoms, (c) less than 1 wt. % compounds having a weight average molecular weight of greater than 1000 g/mol, or (d) any combination thereof wherein the weight percentage is based on the total weight of the oligomer product.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: March 31, 2020
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Brooke L. Small, Ryan W. Snell, Ron D. Knudsen, Eric J. Netemeyer, Orson L. Sydora, Jamie N. Sutherland, Bruce E. Kreischer, William J. Fisher
  • Publication number: 20190375694
    Abstract: Disclosed are processes, systems, and reaction systems for the oligomerization of ethylene to form an oligomer product in a reaction zone using a catalyst system having i) a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, an N2-phosphinyl guanidine chromium compound complex, or any combination thereof, and ii) an aluminoxane. Ethylene can be contacted with an organic reaction medium to form an ethylene feedstock mixture prior to contact with the catalyst system. The ethylene feedstock mixture can be contacted with the catalyst system inside or outside of the reaction zone.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 12, 2019
    Inventors: Steven M. BISCHOF, Orson L. SYDORA, Jared T. FERN, Uriah J. KILGORE, Steven Ross HUTCHISON, Ray RIOS, Eric R. FERNANDEZ
  • Publication number: 20190375693
    Abstract: Disclosed herein are processes, systems, and reaction systems for the oligomerization of ethylene to form an ethylene oligomer product in a reaction zone using a catalyst system having i) a chromium component comprising a heteroatomic ligand chromium compound complex of the type disclosed herein, and ii) an aluminoxane. A C3+ olefin can be present in the reaction zone for a period of time, where the C3+ olefin is not an ethylene oligomer formed in-situ within the reaction zone.
    Type: Application
    Filed: August 21, 2019
    Publication date: December 12, 2019
    Inventors: Jared T. FERN, Orson L. SYDORA, Uriah J. KILGORE, Steven M. BISCHOF, Eric R. FERNANDEZ
  • Patent number: 10493442
    Abstract: A composition comprising an N2-phosphinylamidine chromium salt complex having Structure FNPACr I: wherein CrXp is a chromium salt where X is a monoanion and p is an integer from 2 to 6. A process comprising a) contacting i) ethylene, and ii) a catalyst system comprising an N2-phosphinylamidine chromium salt complex having Structure FNPACr I: wherein CrXp is a chromium salt where X is a monoanion and p is an integer from 2 to 6; and b) forming an oligomer product in a reaction zone.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: December 3, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Uriah J. Kilgore, Orson L. Sydora, Daniel H. Ess, Jack T. Fuller, III, Doo-Hyun Kwon
  • Patent number: 10493422
    Abstract: Disclosed herein are systems and processes which prevent fouling of a reactor inlet of an oligomerization reactor. The systems and processes involve placement of an inlet sleeve around at least a portion of a reactor inlet such that a curtain of inert material flows through an annular space coaxially with respect to an outer surface of the end of the reactor inlet and into the reactor.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: December 3, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Jared T. Fern, Uriah J. Kilgore
  • Patent number: 10464862
    Abstract: Disclosed are processes for oligomerizing ethylene by contacting a catalyst system, ethylene, and optionally hydrogen to form an oligomer product in a reaction zone, wherein the catalyst system comprises: a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, and/or an N2-phosphinyl guanidine chromium compound complex, and an aluminoxane; wherein the aluminoxane is characterized by 400 MHz proton NMR in which: (a) the ratio of peaks found in the range of ?0.86 ppm to ?0.74 ppm to peaks found in a range of ?0.03 ppm to 0.07 ppm is less than or equal to 2.8:1; (b) the ratio of peaks found in the range of ?0.03 ppm to 0.025 ppm to peaks found in a range of 0.025 ppm to 0.07 ppm is less than or equal to 15:1; and/or (c) the ratio of peaks found in a range of ?0.86 ppm to ?0.78 ppm to peaks found in the range of ?0.78 ppm to ?0.74 ppm is less than or equal to 6.5:1.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: November 5, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Jared T. Fern, Uriah J. Kilgore, Orson L. Sydora
  • Patent number: 10435491
    Abstract: Disclosed herein are embodiments of a process which generally includes contacting i) a monomer or mixture of monomers, ii) a haloaluminate ionic liquid, and iii) one or more halide components in a reaction zone, and oligomerizing the monomer or mixture of monomers in the reaction zone to form an oligomer product. The combination of the haloaluminate ionic liquid and halide component can constitute a catalyst system which is used in embodiments of the process to produce the oligomer product.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: October 8, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Robert C. Coffin, Kenneth D. Hope, Michael S. Driver, Hye-Kyung Timken
  • Patent number: 10435334
    Abstract: The present invention discloses processes for producing normal alpha olefins, such as 1-hexene, 1-octene, and 1-decene, in a multistep synthesis scheme. Generally, a first normal alpha olefin is subjected to an olefin metathesis step to form a linear internal olefin, which is then subjected to an isomerization-hydroformylation step to form a linear aldehyde, which is then subjected to a dehydroformylation step to form a second normal alpha olefin.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: October 8, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventor: Steven M. Bischof
  • Patent number: 10414699
    Abstract: Disclosed are processes, systems, and reaction systems for the oligomerization of ethylene to form an oligomer product in a reaction zone using a catalyst system having i) a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, an N2-phosphinyl guanidine chromium compound complex, or any combination thereof, and ii) an aluminoxane. Ethylene can be contacted with an organic reaction medium to form an ethylene feedstock mixture prior to contact with the catalyst system. The ethylene feedstock mixture can be contacted with the catalyst system inside or outside of the reaction zone.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 17, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Orson L. Sydora, Jared T. Fern, Uriah J. Kilgore, Steven Ross Hutchison, Ray Rios, Eric R. Fernandez
  • Patent number: 10414698
    Abstract: Disclosed herein are processes, systems, and reaction systems for the oligomerization of ethylene to form an ethylene oligomer product in a reaction zone using a catalyst system having i) a chromium component comprising a heteroatomic ligand chromium compound complex of the type disclosed herein, and ii) an aluminoxane. A C3+ olefin can be present in the reaction zone for a period of time, where the C3+ olefin is not an ethylene oligomer formed in-situ within the reaction zone.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: September 17, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jared T. Fern, Orson L. Sydora, Uriah J. Kilgore, Steven M. Bischof, Eric R. Fernandez
  • Publication number: 20190263729
    Abstract: The present invention discloses processes for producing normal alpha olefins, such as 1-hexene, 1-octene, 1-decene, and 1-dodecene in a multistep synthesis scheme from another normal alpha olefin. Also disclosed are reactions for converting aldehydes, primary alcohols, and terminal vicinal diols into normal alpha olefins.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 29, 2019
    Inventors: Steven M. Bischof, Vy M. Dong, Faben A. Cruz, Xuesong Wu
  • Publication number: 20190262819
    Abstract: Catalyst compositions for the conversion of aldehyde compounds and primary alcohol compounds to olefins are disclosed herein. Reactions include oxidative dehydroxymethylation processes and oxidative dehydroformylation methods, which are beneficially conducted in the presence of a sacrificial acceptor of H2 gas, such as N,N-dimethylacrylamide.
    Type: Application
    Filed: February 25, 2019
    Publication date: August 29, 2019
    Inventors: Vy M. Dong, Faben A. Cruz, Xuesong Wu, Steven M. Bischof
  • Publication number: 20190263733
    Abstract: Disclosed are processes, systems, and reaction systems for the oligomerization of ethylene to form an ethylene oligomer product in a reaction zone using a catalyst system comprising (a) a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, an N2-phosphinyl guanidine chromium compound complex, or any combination thereof, and (b) an aluminoxane. A C3+ olefin can be present in the reaction zone for a period of time, where the C3+ olefin is not an ethylene oligomer formed in-situ within the reaction zone.
    Type: Application
    Filed: May 9, 2019
    Publication date: August 29, 2019
    Inventors: Jared T. FERN, Orson L. SYDORA, Uriah J. KILGORE, Steven M. BISCHOF, Eric R. FERNANDEZ
  • Patent number: 10329212
    Abstract: Disclosed are processes, systems, and reaction systems for the oligomerization of ethylene to form an ethylene oligomer product in a reaction zone using a catalyst system comprising (a) a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, an N2-phosphinyl guanidine chromium compound complex, or any combination thereof, and (b) an aluminoxane. A C3+ olefin can be present in the reaction zone for a period of time, where the C3+ olefin is not an ethylene oligomer formed in-situ within the reaction zone.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 25, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Jared T. Fern, Orson L. Sydora, Uriah J. Kilgore, Steven M. Bischof, Eric R. Fernandez
  • Publication number: 20190169086
    Abstract: Disclosed herein is a catalyst system comprising (i) a heterocyclic 2-[(phosphinyl)aminyl]imine transition metal compound complex having Structure I wherein T is oxygen or sulfur, R1 and R2 are each independently a C1 to C20 organyl group consisting essentially of inert functional groups, R3 is hydrogen or a C1 to C20 organyl group, L is a C1 to C20 organylene group consisting essentially of inert functional groups, MXp represents a transition metal compound where M is a transition metal, X is a monoanion, and p is an integer from 1 to 6, Q is a neutral ligand, and q ranges from 0 to 6, and (ii) an organoaluminum compound. Also disclosed herein is a process comprising contacting (i) ethylene, (ii) a catalyst system comprising (a) a heterocyclic transition metal compound complex having Structure I as described herein and (b) an organoaluminum compound, and (iii) optionally hydrogen to form an oligomer product.
    Type: Application
    Filed: December 1, 2017
    Publication date: June 6, 2019
    Inventors: Uriah J. Kilgore, Steven M. Bischof
  • Publication number: 20190160448
    Abstract: Disclosed herein are systems and processes which prevent fouling of a reactor inlet of an oligomerization reactor. The systems and processes involve placement of an inlet sleeve around at least a portion of a reactor inlet such that a curtain of inert material flows through an annular space coaxially with respect to an outer surface of the end of the reactor inlet and into the reactor.
    Type: Application
    Filed: January 30, 2019
    Publication date: May 30, 2019
    Inventors: Steven M. BISCHOF, Orson L. SYDORA, Jared T. FERN, Uriah J. KILGORE
  • Patent number: 10294171
    Abstract: A composition comprising a perfluoro-N2-phosphinylamidine chromium salt complex having Structure PFAHNPACr I: wherein Rf1 is a substituted phenyl group comprising alkyl groups at the 2 and 6 positions and at least one fluoro group or perfluoroalkyl group at the 3, 4, and/or 5 positions, R2 is a C1 to C30 organyl group, R4 and R5 are each independently a C1 to C30 organyl group, and CrXp is a chromium salt where X is a monoanion, and p is an integer from 2 to 6.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: May 21, 2019
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Steven M. Bischof, Uriah J. Kilgore, Orson L. Sydora, Daniel H. Ess, Jack T. Fuller, III, Doo-Hyun Kwon
  • Publication number: 20190144356
    Abstract: The present invention discloses processes for producing normal alpha olefins, such as 1-hexene, 1-octene, and 1-decene, in a multistep synthesis scheme. Generally, a first normal alpha olefin is subjected to an olefin metathesis step to form a linear internal olefin, which is then subjected to an isomerization-hydroformylation step to form a linear aldehyde, which is then subjected to a dehydroformylation step to form a second normal alpha olefin.
    Type: Application
    Filed: December 11, 2018
    Publication date: May 16, 2019
    Inventor: Steven M. Bischof
  • Publication number: 20190106365
    Abstract: A catalyst system comprising i) a 2-[(phosphinyl)aminyl] cyclic imine transition metal compound complex and ii) an organoaluminum compound. A process comprising contacting i) ethylene, ii) a catalyst system comprising (a) a 2-[(phosphinyl)aminyl] cyclic imine transition metal compound complex, and (b) an organoaluminum compound, and iii) optionally hydrogen to form an oligomer product.
    Type: Application
    Filed: December 11, 2018
    Publication date: April 11, 2019
    Inventors: Uriah J. KILGORE, Steven M. BISCHOF, Orson L. SYDORA
  • Publication number: 20190092709
    Abstract: Disclosed are processes for oligomerizing ethylene by contacting a catalyst system, ethylene, and optionally hydrogen to form an oligomer product in a reaction zone, wherein the catalyst system comprises: a chromium component comprising an N2-phosphinyl amidine chromium compound complex, an N2-phosphinyl formamidine chromium compound complex, and/or an N2-phosphinyl guanidine chromium compound complex, and an aluminoxane; wherein the aluminoxane is characterized by 400 MHz proton NMR in which: (a) the ratio of peaks found in the range of ?0.86 ppm to ?0.74 ppm to peaks found in a range of ?0.03 ppm to 0.07 ppm is less than or equal to 2.8:1; (b) the ratio of peaks found in the range of ?0.03 ppm to 0.025 ppm to peaks found in a range of 0.025 ppm to 0.07 ppm is less than or equal to 15:1; and/or (c) the ratio of peaks found in a range of ?0.86 ppm to ?0.78 ppm to peaks found in the range of ?0.78 ppm to ?0.74 ppm is less than or equal to 6.5:1.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Inventors: Steven M. BISCHOF, Jared T. FERN, Uriah J. KILGORE, Orson L. SYDORA