Patents by Inventor Steven Trey TINDEL

Steven Trey TINDEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240125491
    Abstract: Disclosed herein are systems and methods for reducing startup time of an equipment front end module (EFEM). The EFEM may include an EFEM chamber formed between a plurality of walls, an upper plenum above the EFEM chamber, the upper plenum in fluid communication with the EFEM chamber, a plurality of ducts that provide a return gas flow path enabling recirculation of gas from the EFEM chamber to the upper plenum, one or more filters that separate the upper plenum from the EFEM chamber, an isolation gate configured to block the return gas flow path responsive to the isolation gate being actuated to a closed position to isolate the one or more filters from an ambient environment responsive to a gas being flowed through the upper plenum when the EFEM chamber is opened to the ambient environment.
    Type: Application
    Filed: October 13, 2022
    Publication date: April 18, 2024
    Inventors: James Christopher Hansen, Steven Trey Tindel, Paul B. Reuter
  • Publication number: 20230326773
    Abstract: A process recipe associated with a substrate at a manufacturing system is identified. A first set of measurements for the substrate is obtained from a substrate measurement subsystem. A second set of measurements for the substrate is obtained from one or more sensors of a chamber of the manufacturing system. A determination is made based on the obtained first set of measurements and the obtained second set of measurements of whether to modify the process recipe by at least one of modifying an operation of the process recipe or generating an instruction to prevent completion of execution of one or more operations of the process recipe.
    Type: Application
    Filed: June 15, 2023
    Publication date: October 12, 2023
    Inventors: Upendra V. Ummethala, Blake Erickson, Prashanth Kumar, Michael Kutney, Steven Trey Tindel, Zhaozhao Zhu
  • Publication number: 20230321583
    Abstract: Disclosed herein are systems and methods for reducing startup time of an equipment front end module (EFEM). The EFEM may include an EFEM chamber formed between a plurality of walls, an upper plenum at a top of the EFEM, the upper plenum in fluid communication with the EFEM chamber, a plurality of ducts that provide a return gas flow path enabling recirculation of gas from the EFEM chamber to the upper plenum, one or more filters in fluid communication with the upper plenum and the EFEM chamber and at least one isolation component configured to removably attach to the EFEM to isolate at least the one or more filters from an ambient environment when the EFEM is opened to the ambient environment.
    Type: Application
    Filed: April 8, 2022
    Publication date: October 12, 2023
    Inventors: Steven Trey Tindel, Paul B. Reuter
  • Patent number: 11756816
    Abstract: A carrier FOUP and a method of placing a carrier are provided. The carrier FOUP includes a body and a door. The body includes a plurality of chamfers, and one or more carriers are placed on, and supported by, the plurality of chamfers. The method of placing a carrier includes placing the carrier in the carrier FOUP and closing the door of the carrier FOUP. When the door is closed, the door pushes against the carrier and aligns the carrier with the alignment feature. The alignment features align the carrier, removing the need to be aligned by the factory interface robot when placing or removing the carrier from the carrier FOUP.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: September 12, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Steven Trey Tindel, Alexander N. Lerner, Kim Ramkumar Vellore
  • Patent number: 11688616
    Abstract: A method for determining whether to modify a manufacturing process recipe is provided. A substrate to be processed at a manufacturing system according to the first process recipe is identified. An instruction to transfer the substrate to a substrate measurement subsystem to obtain a first set of measurements for the substrate is generated. The first set of measurements for the substrate is received from the substrate measurement subsystem. An instruction to transfer the substrate from the substrate measurement subsystem to a processing chamber is generated. A second set of measurements for the substrate is received from one or more sensors of the processing chamber. A first mapping between the first set of measurements and the second set of measurements for the substrate is generated. The first set of measurements mapped to the second set of measurements for the substrate is stored.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: June 27, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Upendra V. Ummethala, Blake Erickson, Prashanth Kumar, Michael Kutney, Steven Trey Tindel, Zhaozhao Zhu
  • Publication number: 20230105742
    Abstract: An equipment front end module (EFEM) having walls, a first wall including one or more load ports and an EFEM chamber formed between the walls. The EFEM further includes an upper plenum at a top of the EFEM and including an opening into the EFEM chamber. Ducts provide a return gas flow path enabling recirculation of gas from the EFEM chamber to the upper plenum, the ducts proximate the one or more load ports. The one or more ducts includes flow elements configured to cause a low pressure condition at a location of the one or more load ports.
    Type: Application
    Filed: October 3, 2022
    Publication date: April 6, 2023
    Inventors: Paul Benjamin Reuter, Steven Trey Tindel
  • Publication number: 20230062206
    Abstract: Spectral data associated with a first prior substrate and/or a second prior substrate is obtained. A metrology measurement value associated with the first portion of the first prior substrate is determined based on one or more metrology measurement values measured for at least one of a second portion of the first prior substrate or a third portion of a second prior substrate. Training data for training a machine learning model to predict metrology measurement values of a current substrate is generated. Generating the training data includes generating a first training input including the spectral data associated with the first prior substrate and generating a first target output for the first training input, the first target output including the determined metrology measurement value associated with the first portion of the first prior substrate. The training data is provided to train the machine learning model.
    Type: Application
    Filed: October 14, 2022
    Publication date: March 2, 2023
    Inventors: Thomas Li, Upendra V. Ummethala, Blake Erickson, Prashanth Kumar, Michael Kutney, Steven Trey Tindel, Zhaozhao Zhu
  • Patent number: 11511950
    Abstract: A substrate flipping device includes a substrate securing assembly, a gripping actuator, and a rotary actuator. The gripping actuator is configured to pneumatically cause the substrate securing assembly to be in an open position to receive a substrate and configured to pneumatically cause the substrate securing assembly to be in a closed position to secure the substrate. The rotary actuator is configured to pneumatically cause the substrate securing assembly to rotate to a flipped position and to pneumatically rotate to a non-flipped position.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: November 29, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Michael Minh Phan, Steven Trey Tindel, Paul Benjamin Reuter
  • Publication number: 20220066411
    Abstract: Methods and systems for detecting and correcting substrate process drift using machine learning are provided. Data associated with processing each of a first set of substrates at a manufacturing system according to a process recipe is provided as input to a trained machine learning model. One or more outputs are obtained from the trained machine learning model. An amount of drift of a first set of metrology measurement values for the first set of substrates from a target metrology measurement value is determined from the one or more outputs. Process recipe modification identifying one or more modifications to the process recipe is also determined. For each modification, an indication of a level of confidence that a respective modification to the process recipe satisfies a drift criterion for a second set of substrates is determined.
    Type: Application
    Filed: July 19, 2021
    Publication date: March 3, 2022
    Inventors: Upendra V. Ummethala, Blake Erickson, Prashanth Kumar, Michael Kutney, Steven Trey Tindel, Zhaozhao Zhu
  • Publication number: 20220033197
    Abstract: A substrate flipping device includes a substrate securing assembly, a gripping actuator, and a rotary actuator. The gripping actuator is configured to pneumatically cause the substrate securing assembly to be in an open position to receive a substrate and configured to pneumatically cause the substrate securing assembly to be in a closed position to secure the substrate. The rotary actuator is configured to pneumatically cause the substrate securing assembly to rotate to a flipped position and to pneumatically rotate to a non-flipped position.
    Type: Application
    Filed: July 29, 2020
    Publication date: February 3, 2022
    Inventors: Michael Minh Phan, Steven Trey Tindel, Paul Benjamin Reuter
  • Publication number: 20220028713
    Abstract: A method for determining whether to modify a manufacturing process recipe is provided. A substrate to be processed at a manufacturing system according to the first process recipe is identified. An instruction to transfer the substrate to a substrate measurement subsystem to obtain a first set of measurements for the substrate is generated. The first set of measurements for the substrate is received from the substrate measurement subsystem. An instruction to transfer the substrate from the substrate measurement subsystem to a processing chamber is generated. A second set of measurements for the substrate is received from one or more sensors of the processing chamber. A first mapping between the first set of measurements and the second set of measurements for the substrate is generated. The first set of measurements mapped to the second set of measurements for the substrate is stored.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 27, 2022
    Inventors: Upendra V. Ummethala, Blake Erickson, Prashanth Kumar, Michael Kutney, Steven Trey Tindel, Zhaozhao Zhu
  • Publication number: 20220026817
    Abstract: A method for training a machine learning model to predict metrology measurements of a current substrate being processed at a manufacturing system is provided. Training data for the machine learning model is generated. A first training input including historical spectral data and/or historical non-spectral data associated with a surface of a prior substrate previously processed at the manufacturing system is generated. A first target output for the first training input is generated. The first target output includes historical metrology measurements associated with the prior substrate previously processed at the manufacturing system. Data is provided to train the machine learning model on (i) a set of training inputs including the first training input, and (ii) a set of target outputs including a first target output.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 27, 2022
    Inventors: Upendra V. Ummethala, Blake Erickson, Prashanth Kumar, Michael Kutney, Steven Trey Tindel, Zhaozhao Zhu
  • Publication number: 20220028716
    Abstract: A method for a substrate measurement subsystem is provided. An indication is received that a substrate being processed at a manufacturing system has been loaded into a substrate measurement subsystem. First positional data of the substrate within the substrate measurement subsystem is determined. One or more portions of the substrate to be measured by one or more sensing components of the substrate measurement subsystem are determined based on the first positional data of the substrate and a process recipe for the substrate. Measurements of each of the determined portions of the substrate are obtained by one or more sensing components of the substrate measurement subsystem. The obtained measurements of each of the determined portions of the substrate are transmitted to a system controller.
    Type: Application
    Filed: July 19, 2021
    Publication date: January 27, 2022
    Inventors: Upendra V. Ummethala, Blake Erickson, Prashanth Kumar, Michael Kutney, Steven Trey Tindel, Zhaozhao Zhu
  • Patent number: 11196360
    Abstract: A chucking station comprises a chuck, a power supply, and one or more pumping elements. The chuck comprises a plurality of first vacuum ports configured to interface with a surface of a substrate and a plurality of second vacuum ports configured to interface with a surface of a carrier. The chuck further comprises a first electrical pin configured to be in electrical communication with a first electrode of the carrier, and a second electrical pin configured to be in electrical communication with a second electrode of the carrier. The power supply is configured to apply a chucking voltage and a de-chucking voltage to the first and second electrical pins. The one or more pumping elements is coupled to the first and second vacuum ports and configured to generate a vacuum between the substrate and the chuck and a vacuum between the carrier and the chuck.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: December 7, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Alexander N. Lerner, Kim Ramkumar Vellore, Steven Trey Tindel
  • Patent number: 11183411
    Abstract: A method includes aligning and positioning a carrier in a predetermined orientation and location within a first front opening pod (FOUP) of a cluster tool, transferring the carrier to a charging station of the cluster tool, transferring a substrate from a second front opening pod (FOUP) of the cluster tool to the charging station and chucking the substrate onto the carrier, transferring the carrier having the substrate thereon from the charging station to a factory interface of the cluster tool, aligning the carrier having the substrate thereon in the factory interface of the cluster tool such that during substrate processing within a processing platform of the cluster tool the carrier is properly oriented and positioned relative to components of the processing platform, where the processing platform comprises one or more processing chambers, transferring the aligned carrier having the substrate thereon from the factory interface to the processing platform of the cluster tool for substrate processing, and tra
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: November 23, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kim Ramkumar Vellore, Alexander N. Lerner, Steven Trey Tindel
  • Publication number: 20210159106
    Abstract: A method includes aligning and positioning a carrier in a predetermined orientation and location within a first front opening pod (FOUP) of a cluster tool, transferring the carrier to a charging station of the cluster tool, transferring a substrate from a second front opening pod (FOUP) of the cluster tool to the charging station and chucking the substrate onto the carrier, transferring the carrier having the substrate thereon from the charging station to a factory interface of the cluster tool, aligning the carrier having the substrate thereon in the factory interface of the cluster tool such that during substrate processing within a processing platform of the cluster tool the carrier is properly oriented and positioned relative to components of the processing platform, where the processing platform comprises one or more processing chambers, transferring the aligned carrier having the substrate thereon from the factory interface to the processing platform of the cluster tool for substrate processing, and tra
    Type: Application
    Filed: January 25, 2021
    Publication date: May 27, 2021
    Inventors: Kim Ramkumar VELLORE, Alexander N. LERNER, Steven Trey TINDEL
  • Patent number: 10916464
    Abstract: A method includes aligning and positioning a carrier in a predetermined orientation and location within a first front opening pod (FOUP) of a cluster tool, transferring the carrier to a charging station of the cluster tool, transferring a substrate from a second front opening pod (FOUP) of the cluster tool to the charging station and chucking the substrate onto the carrier, transferring the carrier having the substrate thereon from the charging station to a factory interface of the cluster tool, aligning the carrier having the substrate thereon in the factory interface of the cluster tool such that during substrate processing within a processing platform of the cluster tool the carrier is properly oriented and positioned relative to components of the processing platform, where the processing platform comprises one or more processing chambers, transferring the aligned carrier having the substrate thereon from the factory interface to the processing platform of the cluster tool for substrate processing, and tra
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: February 9, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kim Ramkumar Vellore, Alexander N. Lerner, Steven Trey Tindel
  • Publication number: 20210028726
    Abstract: A chucking station comprises a chuck, a power supply, and one or more pumping elements. The chuck comprises a plurality of first vacuum ports configured to interface with a surface of a substrate and a plurality of second vacuum ports configured to interface with a surface of a carrier. The chuck further comprises a first electrical pin configured to be in electrical communication with a first electrode of the carrier, and a second electrical pin configured to be in electrical communication with a second electrode of the carrier. The power supply is configured to apply a chucking voltage and a de-chucking voltage to the first and second electrical pins. The one or more pumping elements is coupled to the first and second vacuum ports and configured to generate a vacuum between the substrate and the chuck and a vacuum between the carrier and the chuck.
    Type: Application
    Filed: October 16, 2019
    Publication date: January 28, 2021
    Inventors: Alexander N. LERNER, Kim Ramkumar VELLORE, Steven Trey TINDEL
  • Publication number: 20210028044
    Abstract: A method includes aligning and positioning a carrier in a predetermined orientation and location within a first front opening pod (FOUP) of a cluster tool, transferring the carrier to a charging station of the cluster tool, transferring a substrate from a second front opening pod (FOUP) of the cluster tool to the charging station and chucking the substrate onto the carrier, transferring the carrier having the substrate thereon from the charging station to a factory interface of the cluster tool, aligning the carrier having the substrate thereon in the factory interface of the cluster tool such that during substrate processing within a processing platform of the cluster tool the carrier is properly oriented and positioned relative to components of the processing platform, where the processing platform comprises one or more processing chambers, transferring the aligned carrier having the substrate thereon from the factory interface to the processing platform of the cluster tool for substrate processing, and tra
    Type: Application
    Filed: August 27, 2019
    Publication date: January 28, 2021
    Inventors: Kim Ramkumar VELLORE, Alexander N. LERNER, Steven Trey TINDEL
  • Patent number: D977504
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: February 7, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Upendra V. Ummethala, Blake Erickson, Prashanth Kumar, Michael Kutney, Steven Trey Tindel, Zhaozhao Zhu