Patents by Inventor Su Hwan Oh

Su Hwan Oh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9590135
    Abstract: A superluminescent diode and a method for implementing the same, wherein the method includes growing a first epi layer on top of an SI (semi-insulating substrate); re-growing a butt based on the first epi layer; forming a tapered SSC (spot size converter) on the re-grown butt layer; forming an optical waveguide on an active area that is based on the first epi layer and on an SSC area that is based on the tapered SSC; forming an RWG on the optical waveguide; and forming a p-type electrode and an n-type electrode.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: March 7, 2017
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan Oh, Min Su Kim
  • Publication number: 20170047710
    Abstract: In a luminescent diode and a method for manufacturing the same, a planar buried heterostructure (PBH) and a ridge waveguide structure are combined, so that the luminescent diode can be operated to generate a high output of 100 mW or more at low current. Further, it is possible to reduce electro-optic loss. In addition, the luminescent diode is applied to a wavelength tunable external cavity laser, so that it is possible to provide an external cavity laser having excellent output characteristics.
    Type: Application
    Filed: May 20, 2016
    Publication date: February 16, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan OH, Min Su KIM
  • Publication number: 20170023635
    Abstract: Provided herein is a radio frequency probe apparatus including a RF waveguide including a ground electrode and a signal electrode, a register connected to the signal electrode, a RF connector including an outer conductor connected to the ground electrode, an inner conductor connected to the signal electrode, and a dielectric body filling a portion between the outer conductor and the inner conductor, and a single tip probe connected to the signal electrode of the RF waveguide, or the register.
    Type: Application
    Filed: June 27, 2016
    Publication date: January 26, 2017
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Young Tak HAN, Ki Soo KIM, Su Hwan OH, Chul Wook LEE, Young Ahn LEEM
  • Publication number: 20160300979
    Abstract: A superluminescent diode and a method for implementing the same, wherein the method includes growing a first epi layer on top of an SI (semi-insulating substrate); re-growing a butt based on the first epi layer; forming a tapered SSC (spot size converter) on the re-grown butt layer; forming an optical waveguide on an active area that is based on the first epi layer and on an SSC area that is based on the tapered SSC; forming an RWG on the optical waveguide; and forming a p-type electrode and an n-type electrode.
    Type: Application
    Filed: June 23, 2016
    Publication date: October 13, 2016
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan OH, Min Su KIM
  • Patent number: 9397254
    Abstract: A superluminescent diode and a method for implementing the same, wherein the method includes growing a first epi layer on top of an SI (semi-insulating substrate); re-growing a butt based on the first epi layer; forming a tapered SSC (spot size converter) on the re-grown butt layer; forming an optical waveguide on an active area that is based on the first epi layer and on an SSC area that is based on the tapered SSC; forming an RWG on the optical waveguide; and forming a p-type electrode and an n-type electrode.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: July 19, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan Oh, Min Su Kim
  • Patent number: 9343614
    Abstract: Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: May 17, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan Oh, Ki-Hong Yoon, Kisoo Kim, O-Kyun Kwon, Oh Kee Kwon, Byung-Seok Choi, Jongbae Kim
  • Patent number: 9276376
    Abstract: A laser module includes a Transmitter Optical Sub-Assembly (TOSA) and a heat radiating means. The TOSA generates light by an electrical signal and transmits the generated light through an optical fiber. The heat radiating means is in contact with the TOSA to discharge heat generated by the TOSA.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: March 1, 2016
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Su Hwan Oh, Oh Kee Kwon
  • Publication number: 20150349491
    Abstract: Provided herein is a distributed bragg reflector ridge laser diode that is capable of easily embodying a diffraction grating and that minimizes an optical absorption effect on a DBR area, and a fabricating method thereof, the distributed bragg reflector ridge laser diode including a lower clad layer formed on top of a substrate; an active core zone formed on top of the lower clad layer; a plurality of ridge wave guides formed on top of the active core zone such that they are spaced from one another and extend in an axial direction; and a diffraction grating formed on top of the active core zone and between the plurality of ridge wave guides.
    Type: Application
    Filed: January 21, 2015
    Publication date: December 3, 2015
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Su Hwan OH, Chul Wook LEE
  • Publication number: 20150288143
    Abstract: Provided herein is a tunable external cavity laser comprising: a gain medium configured to create an optical signal; an external reflector configured to be coupled to the gain medium, and to comprise a Bragg grating; and a phase control section configured to adjust a phase of an entire laser, but to adjust a wavelength of the laser to a longer wavelength than a peak reflectivity of the external reflector.
    Type: Application
    Filed: April 1, 2015
    Publication date: October 8, 2015
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Byung Seok CHOI, O Kyun KWON, Ki Soo KIM, Jong Sool JEONG, Su Hwan OH, Ki Hong YOON
  • Publication number: 20150155428
    Abstract: Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
    Type: Application
    Filed: February 6, 2015
    Publication date: June 4, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Su Hwan OH, Ki-Hong YOON, Kisoo KIM, O-Kyun KWON, Oh Kee KWON, Byung-Seok CHOI, Jongbae KIM
  • Publication number: 20150131687
    Abstract: A laser module includes a Transmitter Optical Sub-Assembly (TOSA) and a heat radiating means. The TOSA generates light by an electrical signal and transmits the generated light through an optical fiber. The heat radiating means is in contact with the TOSA to discharge heat generated by the TOSA.
    Type: Application
    Filed: July 21, 2014
    Publication date: May 14, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Su Hwan OH, Oh Kee KWON
  • Publication number: 20150115219
    Abstract: A superluminescent diode and a method for implementing the same, wherein the method includes growing a first epi layer on top of an SI (semi-insulating substrate); re-growing a butt based on the first epi layer; forming a tapered SSC (spot size converter) on the re-grown butt layer; forming an optical waveguide on an active area that is based on the first epi layer and on an SSC area that is based on the tapered SSC; forming an RWG on the optical waveguide; and forming a p-type electrode and an n-type electrode.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 30, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Su Hwan OH, Min Su KIM
  • Publication number: 20150110144
    Abstract: A distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 23, 2015
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee KWON, Su Hwan OH, Young Ahn LEEM, O-Kyun KWON, Young-Tak HAN, Yongsoon BAEK, Yun C. CHUNG
  • Patent number: 8995480
    Abstract: The present disclosure relates to a tunable laser module including a light gain area unit for outputting an optical signal; an optical distributor for separating the optical signal output from the light gain area unit; two comb reflection units for reflecting a part of optical signals separated by the optical distributor and allow a part of the optical signals to penetrate; two phase units for changing phases of the optical signals penetrating the two comb reflection units; an optical coupler for combining the optical signals of which the phases are changed by the two phase units; and an optical amplifier for amplifying the optical signal combined by the optical coupler, wherein the light gain area unit oscillates a laser by totally reflecting the optical signals reflected by the two comb reflection units.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: March 31, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Ki-Hong Yoon, O-Kyun Kwon, Su Hwan Oh, Kisoo Kim, Byung-seok Choi, Hyun Soo Kim
  • Patent number: 8989229
    Abstract: Provided are a high-speed superluminescent diode, a method of manufacturing the same, and a wavelength-tunable external cavity laser including the same. The superluminescent diode includes a substrate having an active region and an optical mode size conversion region, waveguides including an ridge waveguide in the active region and a deep ridge waveguide in the optical mode size conversion region connected to the active waveguide, an electrode disposed on the ridge waveguide; planarizing layers disposed on sides of the ridge waveguide and the deep ridge waveguide on the substrate, and a pad electrically connected to the electrode, the pad being disposed on the planarizing layers outside the active waveguide.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: March 24, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Su Hwan Oh, Ki-Hong Yoon, Kisoo Kim, O-Kyun Kwon, Oh Kee Kwon, Byung-seok Choi, Jongbae Kim
  • Patent number: 8937980
    Abstract: Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: January 20, 2015
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Oh Kee Kwon, Su Hwan Oh, Young Ahn Leem, O-Kyun Kwon, Young-Tak Han, Yongsoon Baek, Yun C. Chung
  • Patent number: 8902937
    Abstract: The present disclosure relates to a compact external cavity tunable laser apparatus. The laser apparatus includes a substrate, an external cavity tunable reflecting unit that reflects laser light entering from the outside on the substrate and selects and varies a wavelength of the reflected laser light, an optical fiber that outputs the laser light on the substrate; and an highly integrated light source that integrates the laser light input from the external cavity tunable reflecting unit using inclined input and output waveguides, a curved waveguide, and a straight waveguide to output the integrated laser light to the optical fiber in order to match an optical axis formed with the external cavity tunable reflecting unit with an optical axis formed with an optical fiber.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: December 2, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Ki-Hong Yoon, O-Kyun Kwon, Kisoo Kim, Byungseok Choi, Hyun Soo Kim, Su Hwan Oh
  • Publication number: 20140064306
    Abstract: The present disclosure relates to a compact external cavity tunable laser apparatus. The laser apparatus includes a substrate, an external cavity tunable reflecting unit that reflects laser light entering from the outside on the substrate and selects and varies a wavelength of the reflected laser light, an optical fiber that outputs the laser light on the substrate; and an highly integrated light source that integrates the laser light input from the external cavity tunable reflecting unit using inclined input and output waveguides, a curved waveguide, and a straight waveguide to output the integrated laser light to the optical fiber in order to match an optical axis formed with the external cavity tunable reflecting unit with an optical axis formed with an optical fiber.
    Type: Application
    Filed: March 21, 2013
    Publication date: March 6, 2014
    Inventors: Ki-Hong Yoon, O-Kyun Kwon, Kisoo Kim, Byungseok Choi, Hyun Soo Kim, Su Hwan Oh
  • Publication number: 20130287054
    Abstract: Distributed feedback-laser diodes are provided. The distributed feedback-laser diode may include a substrate, a lower cladding layer having a grating on the substrate, an active layer disposed on the lower cladding layer, a first upper cladding layer disposed on the active layer, a phase-shift region extending in a first direction on the first upper cladding layer, and a ridge waveguide layer extending in a second direction crossing the first direction on the phase-shift region.
    Type: Application
    Filed: September 13, 2012
    Publication date: October 31, 2013
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Oh Kee KWON, Su Hwan Oh, Young Ahn Leem, O-Kyun Kwon, Young-Tak Han, Yongsoon Baek, Yun C. Chung
  • Publication number: 20130243013
    Abstract: The present disclosure relates to a tunable laser module including a light gain area unit for outputting an optical signal; an optical distributor for separating the optical signal output from the light gain area unit; two comb reflection units for reflecting a part of optical signals separated by the optical distributor and allow a part of the optical signals to penetrate; two phase units for changing phases of the optical signals penetrating the two comb reflection units; an optical coupler for combining the optical signals of which the phases are changed by the two phase units; and an optical amplifier for amplifying the optical signal combined by the optical coupler, wherein the light gain area unit oscillates a laser by totally reflecting the optical signals reflected by the two comb reflection units.
    Type: Application
    Filed: November 14, 2012
    Publication date: September 19, 2013
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Ki-Hong YOON, O-Kyun Kwon, Su Hwan Oh, Kisoo Kim, Byung-seok Choi, Hyun Soo Kim