Patents by Inventor Subhadeep Kal

Subhadeep Kal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170271165
    Abstract: Isotropic silicon and silicon-germanium etching with tunable selectivity is described. The method includes receiving a substrate having a layer of silicon and a layer of silicon-germanium with sidewall surfaces of silicon and silicon-germanium being uncovered, positioning the substrate in a processing chamber configured for etching substrates, and modifying uncovered surfaces of silicon and silicon-germanium by exposing the uncovered surfaces of silicon and silicon-germanium to radical species.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 21, 2017
    Inventors: Subhadeep Kal, Kandabara N. Tapily, Aelan Mosden
  • Patent number: 9748110
    Abstract: Provided is a method for increasing pattern density of a structure on a substrate using an integration scheme, the method comprising: providing a substrate having a first spacer pattern and an underlying layer, the underlying layer comprising a first underlying layer, a second underlying layer, and a target layer; performing a conformal spacer deposition using an oxide, the deposition creating a conformal layer; performing a spacer RIE process and a pull process, thereby generating a second spacer pattern, the spacer RIE process includes adsorption of N-containing gas on a surface of the substrate which activates the surface to react with an F- and/or an H-containing gas to form fluorosilicates; and wherein the integration targets include selectively etching spacer films within a target spacer etch rate, enhanced simultaneous selectivity to the first underlying layer and the second underlying layer and preventing pattern damage.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: August 29, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Subhadeep Kal, Angelique D. Raley, Nihar Mohanty, Aelan Mosden
  • Publication number: 20170207103
    Abstract: A method for the dry removal of a material on a microelectronic workpiece is described. The method includes receiving a workpiece having a surface exposing a target layer composed of silicon selected from the group consisting of amorphous silicon (a-Si), polycrystalline silicon (poly-Si), and doped silicon that fills a trench or via within a retention layer, and selectively removing at least a portion of the target layer from the retention layer. The selective removal includes exposing the surface of the workpiece to a chemical environment containing N, H, and F at a first setpoint temperature to chemically alter a surface region of the target layer, and then, elevating the temperature of the workpiece to a second setpoint temperature to remove the chemically treated surface region of the target layer.
    Type: Application
    Filed: January 13, 2017
    Publication date: July 20, 2017
    Inventors: Subhadeep Kal, Elliott Franke, Akiteru Ko, Aelan Mosden
  • Publication number: 20170069510
    Abstract: Provided is a method for increasing pattern density of a structure on a substrate using an integration scheme, the method comprising: providing a substrate having a first spacer pattern and an underlying layer, the underlying layer comprising a first underlying layer, a second underlying layer, and a target layer; performing a second conformal spacer deposition using an oxide, the deposition creating a second conformal layer; performing a second spacer RIE process and a second pull process, wherein generating a second spacer pattern, the second spacer RIE process includes adsorption of N containing gas on a surface of the substrate which activates the surface to react with an F and/or an H-containing gas to form fluorosilicates; and wherein the integration targets include selectively etching spacer films within a target spacer etch rate, enhanced simultaneous selectivity to the first underlying layer and the second underlying layer and preventing pattern damage.
    Type: Application
    Filed: August 25, 2016
    Publication date: March 9, 2017
    Inventors: Subhadeep Kal, Angelique D. Raley, Nihar Mohanty, Aelan Mosden
  • Publication number: 20160379842
    Abstract: A method for the dry removal of a material on a microelectronic workpiece is described. The method includes receiving a workpiece having a surface exposing a target layer composed of silicon and either (1) organic material or (2) both oxygen and nitrogen, and selectively removing at least a portion of the target layer from the workpiece. The selective removal includes exposing the surface of the workpiece to a chemical environment containing N, H, and F at a first setpoint temperature to chemically alter a surface region of the target layer, and then, elevating the temperature of the workpiece to a second setpoint temperature to remove the chemically treated surface region of the target layer.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 29, 2016
    Inventors: Subhadeep Kal, Nihar Mohanty, Angelique D. Raley, Aelan Mosden, Scott W. Lefevre
  • Publication number: 20160379835
    Abstract: A method and system for the dry removal of a material on a microelectronic workpiece are described. The method includes receiving a workpiece having a surface exposing a target layer to be at least partially removed, placing the workpiece on a workpiece holder in a dry, non-plasma etch chamber, and selectively removing at least a portion of the target layer from the workpiece. The selective removal includes operating the dry, non-plasma etch chamber to perform the following: exposing the surface of the workpiece to a chemical environment at a first setpoint temperature in the range of 35 degrees C. to 100 degrees C. to chemically alter a surface region of the target layer, and then, elevating the temperature of the workpiece to a second setpoint temperature at or above 100 degrees C. to remove the chemically treated surface region of the target layer.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 29, 2016
    Inventors: Subhadeep Kal, Nihar Mohanty, Angelique D. Raley, Aelan Mosden, Scott W. Lefevre