Patents by Inventor Suma Memana Narayana Bhat

Suma Memana Narayana Bhat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955274
    Abstract: A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
    Type: Grant
    Filed: May 22, 2023
    Date of Patent: April 9, 2024
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Publication number: 20240094426
    Abstract: This disclosure provides systems, methods and apparatuses for foreign object detection (FOD) in a wireless power transfer (WPT) system. Some implementations relate generally to the use of detection coils that are excited to measure and compare a differential current through a coil pair that includes at least two detection coils. A foreign object may cause a change in impedance for one or more detection coils compared to one or more other detection coils. By detecting the differential current of the coil pair, a detection apparatus may determine that a foreign object is in proximity to one of the detection coils of the coil pair. This disclosure provides several options for the design, construction, layout, and operations of detection coils to improve foreign object detection.
    Type: Application
    Filed: February 16, 2022
    Publication date: March 21, 2024
    Inventors: Viswanathan Kanakasabai, Subbarao Tatikonda, Jayanti Ganesh, Joginder Yadav, Suma Memana Narayana Bhat
  • Patent number: 11916405
    Abstract: This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for wireless power transmission. In accordance with this disclosure, a wireless power transmission apparatus (such as a charging pad) may support positional freedom such that a wireless power receiving apparatus may be charged regardless of positioning or orientation of the wireless power receiving apparatus. Various implementations include the use of multiple primary coils in a wireless power transmission apparatus. The multiple primary coils may be configured in a pattern, size, shape, or arrangement that enhances positional freedom. In some implementations, the placement of the multiple primary coils may optimize the size and distribution of electromagnetic fields that are available to charge a wireless power receiving apparatus.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: February 27, 2024
    Assignee: GE Hybrid Technologies, LLC
    Inventors: Suma Memana Narayana Bhat, Viswanathan Kanakasabai, Deepak Aravind, Jayanti Ganesh, Adnan Kutubuddin Bohori
  • Patent number: 11909226
    Abstract: This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for a wireless power transmission apparatus that supports charging of one or more wireless power receiving apparatuses. The wireless power transmission apparatus may include multiple primary coils organized in groups (referred to as zones). Each zone may have a local controller for managing operation of one primary coil in the zone at a time. A master controller may selectively couple the primary coils to the local controllers. When a first primary coil is coupled to the local controller for a zone, the other primary coils in that zone may be disabled. The master controller may manage which primary coils from neighboring zones are coupled to their respective local controllers. Thus, when the first primary coil is activated, the adjacent primary coils (near the first primary coil) can be muted or disabled to mitigate undesirable interference.
    Type: Grant
    Filed: May 20, 2020
    Date of Patent: February 20, 2024
    Assignee: General Electric Company
    Inventors: Rupam Basak, Jayanti Ganesh, Viswanathan Kanakasabai, Suma Memana Narayana Bhat, Subbarao Tatikonda
  • Publication number: 20240047133
    Abstract: A charging pad (130) for charging one or more receiver devices (106, 108) is disclosed. The charging pad (130) includes a power drive unit (110) configured to generate a first AC voltage signal having a first frequency and a second AC voltage signal having a second frequency. Further, the charging pad (130) includes a transmitting unit (114) including a single power exchange coil (120) coupled to the power drive unit (110), wherein the single power exchange coil (120) includes a first coil segment (212) configured to transmit the first AC voltage signal having the first frequency when the first AC voltage signal is received from the power drive unit (110). Also, the single power exchange coil (120) includes a second coil segment (214) configured to transmit the second AC voltage signal having the second frequency when the second AC voltage signal is received from the power drive unit (110).
    Type: Application
    Filed: October 23, 2023
    Publication date: February 8, 2024
    Inventors: Suma Memana Narayana Bhat, Deepak Aravind, Somakumar Ramachandrapanicker, Arun Kumar Raghunathan
  • Publication number: 20240030754
    Abstract: This disclosure provides systems, methods and apparatuses for a new communication technique between a wireless power transmission apparatus and a wireless power reception apparatus. The new communication technique may be more efficient for communication of a feedback parameter or other control information compared to a legacy packet-based digital communication technique. The new communication technique may use a pulse width modulation (PWM) signal as an analog representation of a feedback parameter or other control information. In some implementations, the PWM communication technique in this disclosure can be used for a variety of control or feedback information from the wireless power reception apparatus to the wireless power transmission apparatus. Furthermore, in some implementations, the PWM communication technique may be used for feedforward information from the wireless power transmission apparatus to the wireless power reception apparatus.
    Type: Application
    Filed: December 8, 2021
    Publication date: January 25, 2024
    Inventors: Viswanathan Kanakasabai, Rupam Basak, Suma Memana Narayana Bhat, Subbarao Tatikonda
  • Publication number: 20230387727
    Abstract: This disclosure provides systems, methods and apparatuses for foreign object detection (FOD) in a wireless power transfer (WPT) system. Some implementations relate generally to the use of detection coils that are excited to measure and compare a differential current through a coil pair that includes at least two detection coils. A foreign object may cause a change in impedance for one or more detection coils compared to one or more other detection coils. By detecting the differential current of the coil pair, a detection apparatus may determine that a foreign object is in proximity to one of the detection coils of the coil pair. This disclosure provides several options for the design, construction, layout, and operations of detection coils to improve foreign object detection.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Viswanathan Kanakasabai, Subbarao Tatikonda, Jayanti Ganesh, Joginder Yadav, Suma Memana Narayana Bhat
  • Publication number: 20230384471
    Abstract: This disclosure provides systems, methods and apparatuses for foreign object detection (FOD) in a wireless power transfer (WPT) system. Some implementations relate generally to the use of detection coils that are excited to measure and compare a differential current through a coil pair that includes at least two detection coils. A foreign object may cause a change in impedance for one or more detection coils compared to one or more other detection coils. By detecting the differential current of the coil pair, a detection apparatus may determine that a foreign object is in proximity to one of the detection coils of the coil pair. This disclosure provides several options for the design, construction, layout, and operations of detection coils to improve foreign object detection.
    Type: Application
    Filed: August 10, 2023
    Publication date: November 30, 2023
    Inventors: Viswanathan Kanakasabai, Subbarao Tatikonda, Jayanti Ganesh, Joginder Yadav, Suma Memana Narayana Bhat
  • Patent number: 11798737
    Abstract: A charging pad for charging one or more receiver devices is disclosed. The charging pad includes a power drive unit configured to generate a first AC voltage signal having a first frequency and a second AC voltage signal having a second frequency. Further, the charging pad includes a transmitting unit including a single power exchange coil coupled to the power drive unit, wherein the single power exchange coil includes a first coil segment configured to transmit the first AC voltage signal having the first frequency when the first AC voltage signal is received from the power drive unit. Also, the single power exchange coil includes a second coil segment configured to transmit the second AC voltage signal having the second frequency when the second AC voltage signal is received from the power drive unit.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: October 24, 2023
    Assignee: General Electric Company
    Inventors: Suma Memana Narayana Bhat, Deepak Aravind, Somakumar Ramachandrapanicker, Arun Kumar Raghunathan
  • Publication number: 20230331103
    Abstract: A detection device (100) includes a detection mat (102) having a plurality of detection coils (106), and at least one pair of groups of detection coils (106), the pair of groups of detection coils (106) includes first and second groups of detection coils (106). The first and second group of detection coils (106) comprises first and second first and second impedance values. The detection device (100) includes one or more drive sub-systems (112) and a comparison sub-system (112). The drive sub-systems (112) are operatively coupled to the detection mat (102) and configured to excite at least one pair of groups of detection coils (106). The comparison sub-system (114) is operatively coupled to the detection mat (102) and configured to receive a differential current signal from the pair of groups of detection coils (106), the comparison sub-system (114) is configured to generate a control signal based on the differential current signal.
    Type: Application
    Filed: June 21, 2023
    Publication date: October 19, 2023
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Publication number: 20230327491
    Abstract: A transmitting assembly (114, 214, 334) configured to transmit electric power in a universal wireless charging device (102, 200, 302) is presented. The transmitting assembly (114, 214, 334) includes a first coil (116, 216, 316) embedded in a printed circuit board (220) and configured to transmit a first AC voltage signal having a first frequency. Also, the transmitting assembly (114, 214, 334) includes a second coil (118, 218, 318) disposed on the printed circuit board (220) and configured to transmit a second AC voltage signal having a second frequency, wherein the second frequency is different from the first frequency, and wherein the first AC voltage signal having the first frequency and the second AC voltage signal having the second frequency are used to wirelessly charge a plurality of receiver devices (104, 106) having different frequency standards.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 12, 2023
    Inventors: Suma Memana Narayana Bhat, Viswanathan Kanakasabai, Arun Kumar Raghunathan, Rahul Bhujade, Satishbabu Bhogineni, Somakumar Ramachandrapanicker
  • Publication number: 20230298810
    Abstract: A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
    Type: Application
    Filed: May 22, 2023
    Publication date: September 21, 2023
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Publication number: 20230291242
    Abstract: This disclosure provides systems, methods, and apparatuses for wireless power transmission. Various implementations of this disclosure relate generally to intermittent wireless charging. A wireless power transmission apparatus (such as a charging pad or surface) can intermittently provide wireless power to one or more wireless power reception apparatuses based on time slices. The wireless power reception apparatuses can cool during time slices in which wireless power is not transferred. A power control unit of the wireless power transmission apparatus may determine first time slices during which wireless power will be provided to the wireless power reception apparatus. The power control unit also may determine second time slices during which wireless power will not be provided to the wireless power reception apparatus, where the second time slices are interspersed with the first time slices allowing time for thermal loads that accumulated during the first time slices to dissipate.
    Type: Application
    Filed: July 15, 2021
    Publication date: September 14, 2023
    Inventors: Viswanathan Kanakasabai, Suma Memana Narayana Bhat, Subbarao Tatikonda
  • Publication number: 20230275464
    Abstract: This disclosure provides systems, methods and apparatuses for wireless power transmission and reception. A wireless power transmission apparatus may include a primary coil that transmits power to a corresponding secondary coil in a wireless power reception apparatus. The wireless power transmission apparatus may configure characteristics of the wireless power transmission based on a load setting of a wireless power reception apparatus. The wireless power transmission apparatus may take into account a coupling factor and power transfer characteristics of the wireless power reception apparatus in determining a configuration of the wireless power transmission from the wireless power transmission apparatus to the wireless power reception apparatus. In some implementations, a change in wireless power transmission may occur based on a corresponding change in the load. For example, the change in wireless power transmission and the corresponding change in the load may occur in relation to a synchronization event.
    Type: Application
    Filed: August 9, 2021
    Publication date: August 31, 2023
    Inventors: Jayanti Ganesh, Viswanathan Kanakasabai, Suma Memana Narayana Bhat, Joginder Yadav
  • Patent number: 11685269
    Abstract: A detection device includes a detection mat having a plurality of detection coils, and at least one pair of groups of detection coils, the pair of groups of detection coils includes first and second groups of detection coils. The first and second group of detection coils comprises first and second first and second impedance values. The detection device includes one or more drive sub-systems and a comparison sub-system. The drive sub-systems are operatively coupled to the detection mat and configured to excite at least one pair of groups of detection coils. The comparison sub-system is operatively coupled to the detection mat and configured to receive a differential current signal from the pair of groups of detection coils, the comparison subsystem is configured to generate a control signal based on the differential current signal.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: June 27, 2023
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Patent number: 11689056
    Abstract: A transmitting assembly (114, 214, 334) configured to transmit electric power in a universal wireless charging device (102, 200, 302) is presented. The transmitting assembly (114, 214, 334) includes a first coil (116, 216, 316) embedded in a printed circuit board (220) and configured to transmit a first AC voltage signal having a first frequency. Also, the transmitting assembly (114, 214, 334) includes a second coil (118, 218, 318) disposed on the printed circuit board (220) and configured to transmit a second AC voltage signal having a second frequency, wherein the second frequency is different from the first frequency, and wherein the first AC voltage signal having the first frequency and the second AC voltage signal having the second frequency are used to wirelessly charge a plurality of receiver devices (104, 106) having different frequency standards.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: June 27, 2023
    Assignee: General Electric Company
    Inventors: Suma Memana Narayana Bhat, Viswanathan Kanakasabai, Arun Kumar Raghunathan, Rahul Bhujade, Satishbabu Bhogineni, Somakumar Ramachandrapanicker
  • Patent number: 11670449
    Abstract: A receiver unit of a wireless power transfer system is presented. The receiver unit includes a main receiver coil, a plurality of auxiliary receiver coils disposed about a central axis of the main receiver coil, and a receiver drive subunit. The receiver drive subunit includes a main converter operatively coupled to the main receiver coil and having a main output terminal. The receiver drive subunit may include a plurality of auxiliary converters operatively coupled to the plurality of auxiliary receiver coils. The plurality of auxiliary converters may be operatively coupled to each other to form an auxiliary output terminal coupled in series to the main output terminal to form a common output terminal. In some implementations, the receiver drive unit may be formed on a substrate of an integrated electronic component. The integrated electronic component may further include a communication subunit and a controller disposed.
    Type: Grant
    Filed: April 21, 2022
    Date of Patent: June 6, 2023
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Deepak Aravind, Suma Memana Narayana Bhat, Adnan Kutubuddin Bohori
  • Patent number: 11616399
    Abstract: A wireless charging device includes a driver unit configured to generate one of a first AC voltage signal having a first frequency and a second AC voltage signal having a second frequency. Also, the wireless charging device includes a transmitting unit having a first coil and a first capacitor and configured to transmit the first AC voltage signal. Further, the transmitting unit includes a second coil and a second capacitor and configured to transmit the second AC voltage signal. Additionally, the wireless charging device includes a control unit configured to detect a first receiver device operating at the first frequency based on a change in a first voltage in the transmitting unit, and detect a second receiver device operating at the second frequency based on a change in a second voltage in the transmitting unit.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: March 28, 2023
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Suma Memana Narayana Bhat, Arun Kumar Raghunathan, Rahul Bhujade, Satishbabu Bhogineni, Somakumar Ramachandrapanicker
  • Patent number: 11588349
    Abstract: A wireless charging device includes a driver unit configured to generate one of a first AC voltage signal having a first frequency and a second AC voltage signal having a second frequency. Also, the wireless charging device includes a transmitting unit having a first coil and a first capacitor and configured to transmit the first AC voltage signal. Further, the transmitting unit includes a second coil and a second capacitor and configured to transmit the second AC voltage signal. Additionally, the wireless charging device includes a control unit configured to detect a first receiver device operating at the first frequency based on a change in a first voltage in the transmitting unit, and detect a second receiver device operating at the second frequency based on a change in a second voltage in the transmitting unit.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: February 21, 2023
    Assignee: General Electric Company
    Inventors: Viswanathan Kanakasabai, Suma Memana Narayana Bhat, Arun Kumar Raghunathan, Rahul Bhujade, Satishbabu Bhogineni, Somakumar Ramachandrapanicker
  • Publication number: 20220385112
    Abstract: This disclosure provides systems, devices, apparatus and methods, including computer programs encoded on storage media, for wireless power transmission. A wireless power receiving apparatus may be configured to combine power from multiple wireless power signals. In some implementations, the wireless power receiving apparatus may combine wireless power received from multiple secondary coils to provide a combined wireless power signal to a load, such as a battery charger or electronic device. In some implementations, each set of primary coil and secondary coil may utilize low power wireless power signals (such as 15 Watts or less) in accordance with a wireless charging standard. By combining power from multiple low power wireless power signals, the wireless power receiving apparatus may support higher power requirements of an electronic device. The disclosed designs may minimize electromagnetic interference (EMI) and provide greater efficiency of wireless power transfer.
    Type: Application
    Filed: November 10, 2020
    Publication date: December 1, 2022
    Inventors: Viswanathan Kanakasabai, Suma Memana Narayana Bhat, Jayanti Ganesh, Rupam Basak