Patents by Inventor Sun Ig HONG

Sun Ig HONG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11168386
    Abstract: The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Co: 3-12 at %; Cr: 3-18 at %; Fe: 3-50 at %; Mn: 3-20 at %; Ni: 17-45 at %; V: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less, and the sum of the V content and the Co content is 22 at % or less.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: November 9, 2021
    Assignees: POSTECH ACADEMY-INDUSTRY FOUNDATION, THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY
    Inventors: Byeong-joo Lee, Sung-hak Lee, Hyoung-seop Kim, Young-sang Na, Sun-ig Hong, Won-mi Choi, Chang-woo Jeon, Seung-mun Jung
  • Patent number: 10988834
    Abstract: The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Cr: 3-18 at %; Fe: 3-60 at %; Mn: 3-40 at% ; Ni: 20-80 at %: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: April 27, 2021
    Assignees: POSTECH ACADEMY-INDUSTRY FOUNDATION, THE INDUSTRY & ACADEMIC COOPERATION IN CHUNGNAM NATIONAL UNIVERSITY
    Inventors: Byeong-joo Lee, Sung-hak Lee, Hyoung-seop Kim, Young-sang Na, Sun-ig Hong, Won-mi Choi, Chang-woo Jeon, Seung-mun Jung
  • Publication number: 20200149144
    Abstract: A method of making a metallic alloy, more particularly, a high-entropy alloy with a composite structure that exhibits high strength and good ductility, and is used as a component material in electromagnetic, chemical, shipbuilding, machinery, and other applications, and in extreme environments, and the like.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Inventors: Sun Ig Hong, Jae Sook Song
  • Patent number: 10570491
    Abstract: A metallic alloy, more particularly, a high-entropy alloy with a composite structure exhibits high strength and good ductility, and is used as a component material in electromagnetic, chemical, shipbuilding, machinery, and other applications, and in extreme environments, and the like.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: February 25, 2020
    Assignee: The Industry & Academic Cooperation in Chungnam National University (IAC)
    Inventors: Sun Ig Hong, Jae Sook Song
  • Publication number: 20200056272
    Abstract: A high entropy steel in which twinning and phase transformation are simultaneously performed, and a method of manufacturing the same, are provided.
    Type: Application
    Filed: July 10, 2019
    Publication date: February 20, 2020
    Inventors: Sun Ig HONG, Jae Sook SONG, Byung Ju LEE
  • Publication number: 20190071755
    Abstract: The present invention relates to a high-entropy alloy especially having excellent low-temperature tensile strength and elongation by means of having configured, through thermodynamic calculations, an alloy composition region having an FCC single-phase microstructure at 700° C. or higher, and enabling the FCC single-phase microstructure at room temperature and at an ultra-low temperature. The high-entropy alloy, according to the present invention, comprises: Co: 3-12 at %; Cr: 3-18 at %; Fe: 3-50 at %; Mn: 3-20 at %; Ni: 17-45 at %; V: 3-12 at %; and unavoidable impurities, wherein the ratio of the V content to the Ni content (V/Ni) is 0.5 or less, and the sum of the V content and the Co content is 22 at % or less.
    Type: Application
    Filed: March 21, 2017
    Publication date: March 7, 2019
    Inventors: Byeong-joo LEE, Sung-hak LEE, Hyoung-seop KIM, Young-sang NA, Sun-ig HONG, Won-mi CHOI, Chang-woo JEON, Seung-mun JUNG
  • Publication number: 20190024198
    Abstract: High-entropy alloy, particularly a precipitation hardening high entropy alloy, is provided as a component material used in electromagnetic, chemical, shipbuilding, mechanical, and other applications, a component material used in extreme environments requiring high strength and good corrosion resistance, and the like.
    Type: Application
    Filed: July 19, 2017
    Publication date: January 24, 2019
    Inventors: Sun Ig Hong, Jae Sook Song
  • Publication number: 20190017150
    Abstract: A Cr filament-reinforced CrMnFeNiCu(Ag)-based high-entropy alloy and a method for manufacturing the same are provided. The high-entropy alloy, according to an exemplary embodiment in the present disclosure, includes, by at. %, Cr in an amount greater than 5% and less than 42%, Mn in an amount greater than 5% and less than 35%, Fe in an amount greater than 5% and less than 35%, Ni in an amount greater than 5% and less than 35%, and at least one of Cu in an amount greater than 3% and less than 35%, and Ag in an amount greater than 3% and less than 35%, and residual inevitable impurities. The high-entropy alloy has a dual phase in which a Cr or a Cr-rich phase is distributed within a matrix of the high-entropy alloy in filament or ribbon form.
    Type: Application
    Filed: May 8, 2018
    Publication date: January 17, 2019
    Inventors: Sun Ig Hong, Jae Sook Song, Seung Min Oh
  • Publication number: 20170275745
    Abstract: A metallic alloy, more particularly, a high-entropy alloy with a composite structure exhibits high strength and good ductility, and is used as a component material in electromagnetic, chemical, shipbuilding, machinery, and other applications, and in extreme environments, and the like.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 28, 2017
    Inventors: Sun Ig Hong, Jae Sook Song
  • Publication number: 20120270070
    Abstract: Disclosed are a hybrid copper alloy with high strength, high elastic modulus, high corrosion-resistance, wear resistance, and high conductivity and a method for producing the same. The hybrid copper alloy has a bi- or multi-layer structure in which (A) a copper alloy Cu (A) selected from the group consisting of Cu—Zn, Cu—Al, Cu—Ni—Zn, Cu—Ni—Si, Cu—Ni—Sn and Cu—Ni—Si—Sn is bonded to a copper alloy Cu (B) selected from the group consisting of Cu—Cr, Cu—Zr, Cu—Ag, Cu—Mg and Cu—Cr—Zr or molten alloys of a copper alloy Cu (A) and a copper alloy Cu (B) are cast in parallel such that a joint interface between these alloys is present. The hybrid copper alloy exhibits high strength, high elasticity, high corrosion resistance, abrasion resistance and high conductivity that cannot be obtained by a single copper alloy known to date.
    Type: Application
    Filed: February 7, 2012
    Publication date: October 25, 2012
    Applicant: The Industry & Academic Coorporation in Chungnam National University (IAC)
    Inventors: Sun Ig HONG, Ki Hwan OH