Patents by Inventor Sung Dae Yim

Sung Dae Yim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170069916
    Abstract: Provided are a metal oxide-carbon nanomaterial composite, a method of preparing the metal oxide-carbon nanomaterial composite, a catalyst, a method of preparing the catalyst, and a catalyst layer that includes the catalyst and that is used for fuel cell electrodes. The metal oxide-carbon nanomaterial composite includes a metal oxide particle having a specific surface area of 5 square meters per gram (m2/g) or less, and a carbon nanomaterial formed on a surface of the metal oxide particle. The catalyst includes a metal oxide-carbon nanomaterial composite in which a carbon nanomaterial is formed on a metal oxide particle, and an active metal particle formed on a surface of the carbon nanomaterial.
    Type: Application
    Filed: September 2, 2016
    Publication date: March 9, 2017
    Inventors: Sung Dae Yim, Seong Hun Cho, Kwang Hyun Chang, Eun Ja Lim, Tae Hyun Yang, Young Jun Sohn, Byung Chan Bae, Seok Hee Park, Gu Gon Park, Chang Soo Kim, Seung Gon Kim, Min Jin Kim
  • Patent number: 9590258
    Abstract: Provided are an apparatus and a method for managing a fuel cell vehicle system, and more particularly, an apparatus and a method for managing a fuel cell vehicle system capable of optimally maintaining a driving method based on environmental information and product information.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: March 7, 2017
    Assignee: Korea Institute of Energy Research
    Inventors: Min Jin Kim, Young-Jun Sohn, Gu-Gon Park, Byung Chan Bae, Sung-Dae Yim, Young-Woo Choi, Seok-Hee Park, Young-Gi Yoon, Tae-Hyun Yang, Won-Yong Lee, Chang-Soo Kim
  • Patent number: 9577274
    Abstract: Provided are an apparatus and a method for managing a fuel cell vehicle system, and more particularly, an apparatus and a method for managing a fuel cell vehicle system capable of optimally maintaining a driving method based on environmental information and product information.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: February 21, 2017
    Assignee: Korea Institute of Energy Research
    Inventors: Min Jin Kim, Young-Jun Sohn, Gu-Gon Park, Byung Chan Bae, Sung-Dae Yim, Young-Woo Choi, Seok-Hee Park, Young-Gi Yoon, Tae-Hyun Yang, Won-Yong Lee, Chang-Soo Kim
  • Patent number: 9559363
    Abstract: Provided are a method for preparing a catalyst layer by an in-situ sol-gel reaction of tetraethoxysilane, and a fuel cell including the catalyst layer prepared thereby. Addition of silica mitigates specific adsorption of sulfonate groups contained in a Nafion ionomer on a Pt catalyst layer in a high-voltage region where the role of a catalyst predominates, resulting in improvement of ORR performance.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: January 31, 2017
    Assignee: Korea Institute of Energy Research
    Inventors: Sung-Dae Yim, Taeyoung Kim, Seok-Hee Park, Young-Gi Yoon, Gu-Gon Park, Tae-Hyun Yang, Young-Woo Choi, Byung-Chan Bae, Young-Jun Son, Min-Jin Kim, Chang-Soo Kim
  • Patent number: 9306233
    Abstract: The present invention concerns the preparation of an anion binder for a solid alkaline fuel cell which enhances durability to electrochemical reactions and makes the production of electrode slurry easy. A method of preparing an anion binder for a solid alkaline fuel cell includes: (A) mixing an electrolytic monomer of quaternary ammonium salts having a cation group, a bisacrylicamide crosslinking agent having a tertiary amino group, and water together by stirring; (B) mixing the mixture with a photoinitiator; (C) interposing the solution between polyethylene terephthalate films and irradiating the solution with ultraviolet light for crosslinking and polymerization; and (D) pulverizing crosslinked polymerized resin to a nano size.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: April 5, 2016
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Young Woo Choi, Mi Soon Lee, Tae Hyun Yang, Chang Soo Kim, Young Gi Yoon, Seok Hee Park, Sung Dae Yim, Gu Gon Park, Young Jun Sohn, Minjin Kim, Byungchan Bae
  • Publication number: 20160036077
    Abstract: Provided are an apparatus and a method for managing a fuel cell vehicle system, and more particularly, an apparatus and a method for managing a fuel cell vehicle system capable of optimally maintaining a driving method based on environmental information and product information.
    Type: Application
    Filed: October 14, 2015
    Publication date: February 4, 2016
    Inventors: Min Jin Kim, Young-Jun Sohn, Gu-Gon Park, Byung Chan Bae, Sung-Dae Yim, Young-Woo Choi, Seok-Hee Park, Young-Gi Yoon, Tae-Hyun Yang, Won-Yong Lee, Chang-Soo Kim
  • Publication number: 20150278704
    Abstract: Provided is a method for optimization of fuel cells operating conditions using a hybrid model, and more particularly, a method for optimization of fuel cells operating conditions using a hybrid model which generates a life prediction model determined by time and temperature based on a theoretical performance model and an empirical durability model and estimates an optimal operation temperature in a target life based on the life prediction model.
    Type: Application
    Filed: May 21, 2014
    Publication date: October 1, 2015
    Applicant: Korea Institute of Energy Research
    Inventors: Minjin KIM, Young-Jun SOHN, Gu-Gon PARK, Byungchan BAE, Sung-Dae YIM, Young-Woo CHOI, Seok-Hee PARK, Tae-Hyun YANG, Won-Yong LEE, Chang-Soo KIM
  • Patent number: 9093677
    Abstract: Provided are an apparatus and a method for managing a stationary fuel cell system, and more particularly, an apparatus and a method for managing a stationary fuel cell system capable of optimally maintaining a driving method based on environmental information and product information.
    Type: Grant
    Filed: September 16, 2013
    Date of Patent: July 28, 2015
    Assignee: Korea Institute of Energy Research
    Inventors: Min Jin Kim, Young-Jun Sohn, Gu-Gon Park, Byung Chan Bae, Sung-Dae Yim, Young-Woo Choi, Seok-Hee Park, Young-Gi Yoon, Tae-Hyun Yang, Won-Yong Lee, Chang-Soo Kim
  • Patent number: 9077016
    Abstract: An anion exchange composite membrane is filled with crosslinked polymer electrolytes for fuel cells.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: July 7, 2015
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Young Woo Choi, Mi Soon Lee, Tae Hyun Yang, Chang Soo Kim, Young Gi Yoon, Seok Hee Park, Sung Dae Yim, Gu Gon Park, Young Jun Sohn, Minjin Kim, Byungchan Bae
  • Publication number: 20140315119
    Abstract: Disclosed are a new method for preparing a highly conductive anion-exchange composite membrane with a crosslinked polymer electrolyte for an alkaline fuel cell and a composite membrane prepared by the same. The method includes (A) mixing (vinylbenzyl)trimethylammonium chloride, 1,3,5-triacryloylhexahydro-1,3,5-triazine, and a mixed solution of deionized water and dimethyl formamide at a weight ratio of 1:1 together by stirring at a weight ratio of 60˜75:5˜16:20˜25; (B) mixing 100 parts by weight of the mixed solution with 0.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 23, 2014
    Inventors: Young Woo Choi, Hyun Gu Kang, Mi Soon Lee, Tae Hyun Yang, Chang Soo Kim, Young Gi Yoon, Seok Hee Park, Sung Dae Yim, Gu Gon Park, Young Jun Sohn, Minjin Kim, Byungchan Bae
  • Publication number: 20140315115
    Abstract: The present invention concerns the preparation of an anion binder for a solid alkaline fuel cell which enhances durability to electrochemical reactions and makes the production of electrode slurry easy. A method of preparing an anion binder for a solid alkaline fuel cell includes: (A) mixing an electrolytic monomer of quaternary ammonium salts having a cation group, a bisacrylicamide crosslinking agent having a tertiary amino group, and water together by stirring; (B) mixing the mixture with a photoinitiator; (C) interposing the solution between polyethylene terephthalate films and irradiating the solution with ultraviolet light for crosslinking and polymerization; and (D) pulverizing crosslinked polymerized resin to a nano size.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 23, 2014
    Inventors: Young Woo Choi, Mi Soon Lee, Tae Hyun Yang, Chang Soo Kim, Young Gi Yoon, Seok Hee Park, Sung Dae Yim, Gu Gon Park, Young Jun Sohn, Minjin Kim, Byungchan Bae
  • Publication number: 20140236535
    Abstract: Provided are an apparatus and a method for soft-sensing a vehicle or stationary fuel cell system capable of predicting a quality variable based on a process variable and providing the predicted quality variable in real time.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 21, 2014
    Applicant: Korea Institute of Energy Research
    Inventors: Minjin KIM, Young-Jun SOHN, Gu-Gon PARK, Byungchan BAE, Sung-Dae YIM, Young-Woo CHOI, Seok-Hee PARK, Tae-Hyun YANG, Won-Yong LEE, Chang-Soo KIM
  • Patent number: 8720252
    Abstract: A quality control apparatus for a gas diffusion layer includes a support, at least one first pressure device, a plate provided below the first pressure device and supporting the pressure applied to the gas diffusion layer sample, a first controller controlling the compression of the first pressure device, a thickness gauge measuring the thickness of the gas diffusion layer sample, a flow channel formed in the sample compressing portion to discharge a gas to the gas diffusion layer sample, a gas supply controller, a gas supply source, a pressure gauge, two fixing devices, a third controller controlling the compression of the fixing devices, two second pressure, a second controller controlling the compression of the second pressure device, a stopper, a protrusion, and a load cell.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: May 13, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Gu-Gon Park, Minjin Kim, Young-Jun Sohn, Young-Woo Choi, Seok-Hee Park, Sung-Dae Yim, Tae-Hyun Yang, Young-Gi Yoon, Won-Yong Lee, Chang-Soo Kim
  • Patent number: 8685590
    Abstract: An apparatus for pre-activation of a polymer electrolyte fuel cell includes a first plate and a second plate hot pressing the unit cell stack, each having a flow channel supplying water vapor to opposing inner surfaces with the unit cell stack therebetween and including a resistor producing heat, a compressor, a temperature controller and a water vapor supplier connected to the flow channels of the plates. The apparatus for pre-activating a polymer electrolyte fuel cell may be used to prepare a prep-activated integrated body of a polymer electrolyte fuel cell membrane electrode assembly and gas diffusion layers by performing hot pressing while supplying water vapor to the unit cell stack to hydrate the polymer electrolyte membrane.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: April 1, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Gu-Gon Park, Minjin Kim, Young-Jun Sohn, Young-Woo Choi, Seok-Hee Park, Sung-Dae Yim, Tae-Hyun Yang, Young-Gi Yoon, Won-Yong Lee, Chang-Soo Kim
  • Publication number: 20140080023
    Abstract: Provided are an apparatus and a method for managing a stationary fuel cell system, and more particularly, an apparatus and a method for managing a stationary fuel cell system capable of optimally maintaining a driving method based on environmental information and product information.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 20, 2014
    Applicant: Korea Institute of Energy Research
    Inventors: Min Jin Kim, Young-Jun Sohn, Gu-Gon Park, Byung Chan Bae, Sung-Dae Yim, Young-Woo Choi, Seok-Hee Park, Young-Gi Yoon, Tae-Hyun Yang, Won-Yong Lee, Chang-Soo Kim
  • Publication number: 20140080022
    Abstract: Provided are an apparatus and a method for managing a fuel cell vehicle system, and more particularly, an apparatus and a method for managing a fuel cell vehicle system capable of optimally maintaining a driving method based on environmental information and product information.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 20, 2014
    Applicant: Korea Institute of Energy Research
    Inventors: Min Jin Kim, Young-Jun Sohn, Gu-Gon Park, Byung Chan Bae, Sung-Dae Yim, Young-Woo Choi, Seok-Hee Park, Young-Gi Yoon, Tae-Hyun Yang, Won-Yong Lee, Chang-Soo Kim
  • Publication number: 20140023952
    Abstract: Provided are a method for preparing a catalyst layer by an in-situ sol-gel reaction of tetraethoxysilane, and a fuel cell including the catalyst layer prepared thereby. Addition of silica mitigates specific adsorption of sulfonate groups contained in a Nafion ionomer on a Pt catalyst layer in a high-voltage region where the role of a catalyst predominates, resulting in improvement of ORR performance.
    Type: Application
    Filed: January 16, 2013
    Publication date: January 23, 2014
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Sung-Dae Yim, Taeyoung Kim, Seok-Hee Park, Young-Gi Yoon, Gu-Gon Park, Tae-Hyun Yang, Young-Woo Choi, Byung-Chan Bae, Young-Jun Son, Min-Jin Kim, Chang-Soo Kim
  • Publication number: 20130288157
    Abstract: An anion exchange composite membrane is filled with crosslinked polymer electrolytes for fuel cells.
    Type: Application
    Filed: August 17, 2012
    Publication date: October 31, 2013
    Inventors: Young Woo Choi, Mi Soon Lee, Tae Hyun Yang, Chang Soo Kim, Young Gi Yoon, Seok Hee Park, Sung Dae Yim, Gu Gon Park, Young Jun Sohn, Minjin Kim, Byungchan Bae
  • Publication number: 20130253080
    Abstract: The present disclosure relates to a method for preparing sulfonated polyarylene ether sulfone copolymer used in fabricating an electrolyte polymer membrane which is core material, the method comprising: A) mixing monomers, 4,4?-dihydroxydiphenyl; bis(4-chlorophenyl)sulfone or bis(4-fluorophenyl)sulfone; and 3,3?-disulfonated-4,4?-chlorodiphenyl sulfone with K2CO3; B) dissolving said mixture in a reaction solvent, i.e. N,N-Dimethylacetamide; C) reacting said dissolved mixture for 16˜20 hours at a temperature of 160˜190° C.; and D) precipitating, cleaning and filtering, and then drying said reactant.
    Type: Application
    Filed: August 17, 2012
    Publication date: September 26, 2013
    Inventors: Mi Soon LEE, Young Woo Choi, Tae Hyun Yang, Chang Soo Kim, Young Gi Yoon, Seok Hee Park, Sung Dae Yim, Gu Gon Park, Young Jun Sohn, Minjin Kim, Byungchan Bae
  • Publication number: 20110271742
    Abstract: A quality control apparatus for a gas diffusion layer includes a support, at least one first pressure device, a plate provided below the first pressure device and supporting the pressure applied to the gas diffusion layer sample, a first controller controlling the compression of the first pressure device, a thickness gauge measuring the thickness of the gas diffusion layer sample, a flow channel formed in the sample compressing portion to discharge a gas to the gas diffusion layer sample, a gas supply controller, a gas supply source, a pressure gauge, two fixing devices, a third controller controlling the compression of the fixing devices, two second pressure, a second controller controlling the compression of the second pressure device, a stopper, a protrusion, and a load cell.
    Type: Application
    Filed: October 18, 2010
    Publication date: November 10, 2011
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Gu-Gon Park, Minjin Kim, Young-Jun Sohn, Young-Woo Choi, Seok-Hee Park, Sung-Dae Yim, Tae-Hyun Yang, Young-Gi Yoon, Won-Yong Lee, Chang-Soo Kim