Patents by Inventor Sung-taeg Kang

Sung-taeg Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240008279
    Abstract: A semiconductor device and method of fabricating the same are disclosed. The method includes depositing a polysilicon gate layer over a gate dielectric formed over a surface of a substrate in a peripheral region, forming a dielectric layer over the polysilicon gate layer and depositing a height-enhancing (HE) film over the dielectric layer. The HE film, the dielectric layer, the polysilicon gate layer and the gate dielectric are then patterned for a high-voltage Field Effect Transistor (HVFET) gate to be formed in the peripheral region. A high energy implant is performed to form at least one lightly doped region in a source or drain region in the substrate adjacent to the HVFET gate. The HE film is then removed, and a low voltage (LV) logic FET formed on the substrate in the peripheral region. In one embodiment, the LV logic FET is a high-k metal-gate logic FET.
    Type: Application
    Filed: June 26, 2023
    Publication date: January 4, 2024
    Applicant: Cypress Semiconductor Corporation
    Inventors: Chun Chen, James Pak, Unsoon KIM, Inkuk Kang, Sung-Taeg Kang, Kuo Tung Chang
  • Publication number: 20230317180
    Abstract: The gap width in a threshold voltage (Vt) distribution for a 3D NAND Flash cell is improved by performing touchup program on a selected portion of the word lines in a block after all of the word lines in the block have been programmed.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Rifat FERDOUS, Sung-Taeg KANG, Golnaz KARBASIAN, Ali KHAKIFIROOZ, Rohit S. SHENOY
  • Patent number: 11690227
    Abstract: A semiconductor device and method of fabricating the same are disclosed. The method includes depositing a polysilicon gate layer over a gate dielectric formed over a surface of a substrate in a peripheral region, forming a dielectric layer over the polysilicon gate layer and depositing a height-enhancing (HE) film over the dielectric layer. The HE film, the dielectric layer, the polysilicon gate layer and the gate dielectric are then patterned for a high-voltage Field Effect Transistor (HVFET) gate to be formed in the peripheral region. A high energy implant is performed to form at least one lightly doped region in a source or drain region in the substrate adjacent to the HVFET gate. The HE film is then removed, and a low voltage (LV) logic FET formed on the substrate in the peripheral region. In one embodiment, the LV logic FET is a high-k metal-gate logic FET.
    Type: Grant
    Filed: May 18, 2021
    Date of Patent: June 27, 2023
    Assignee: CYPRESS SEMICONDUCTOR CORPORATION
    Inventors: Chun Chen, James Pak, Unsoon Kim, Inkuk Kang, Sung-Taeg Kang, Kuo Tung Chang
  • Patent number: 11587874
    Abstract: Apparatus, systems, or methods for a memory array having a plurality of word lines. A word line includes at least one word line plate, and the word line plate comprises a first material with a first resistivity. An edge of the word line plate is recessed and filled with a second material having a second resistivity that is lower than the first resistivity. As a result, the total resistance of the word line may be reduced compared to a word line using only the first material with the first resistivity. Other embodiments may also be described and claimed.
    Type: Grant
    Filed: February 24, 2020
    Date of Patent: February 21, 2023
    Assignee: Intel Corporation
    Inventors: Sung-Taeg Kang, Pranav Kalavade, Owen W. Jungroth, Prasanna Srinivasan
  • Publication number: 20220366962
    Abstract: After reading a 3D (three dimensional) NAND array, the wordlines of the 3D NAND array can be transitioned to ground in a staggered manner. The 3D NAND array includes a 3D stack with multiple wordlines vertically stacked, including a bottom-most wordline, a top-most wordline, and middle wordlines between the bottom-most wordline and the top-most wordline. A controller that controls the reading can set the multiple wordlines to a read voltage for reading operations and then transition a selected wordline of the multiple wordlines from the read voltage to ground prior to transitioning the other wordlines to ground. Thus, the controller will transition the other wordlines from the read voltage to ground after a delay.
    Type: Application
    Filed: May 17, 2021
    Publication date: November 17, 2022
    Inventors: Rifat FERDOUS, Sung-Taeg KANG, Rohit S. SHENOY, Ali KHAKIFIROOZ, Dipanjan BASU
  • Publication number: 20210296343
    Abstract: A semiconductor device and method of fabricating the same are disclosed. The method includes depositing a polysilicon gate layer over a gate dielectric formed over a surface of a substrate in a peripheral region, forming a dielectric layer over the polysilicon gate layer and depositing a height-enhancing (HE) film over the dielectric layer. The HE film, the dielectric layer, the polysilicon gate layer and the gate dielectric are then patterned for a high-voltage Field Effect Transistor (HVFET) gate to be formed in the peripheral region. A high energy implant is performed to form at least one lightly doped region in a source or drain region in the substrate adjacent to the HVFET gate. The HE film is then removed, and a low voltage (LV) logic FET formed on the substrate in the peripheral region. In one embodiment, the LV logic FET is a high-k metal-gate logic FET.
    Type: Application
    Filed: May 18, 2021
    Publication date: September 23, 2021
    Applicant: Cypress Semiconductor Corporation
    Inventors: Chun Chen, James Pak, Unsoon KIM, Inkuk Kang, Sung-Taeg Kang, Kuo Tung Chang
  • Publication number: 20210265278
    Abstract: Apparatus, systems, or methods for a memory array having a plurality of word lines. A word line includes at least one word line plate, and the word line plate comprises a first material with a first resistivity. An edge of the word line plate is recessed and filled with a second material having a second resistivity that is lower than the first resistivity. As a result, the total resistance of the word line may be reduced compared to a word line using only the first material with the first resistivity. Other embodiments may also be described and claimed.
    Type: Application
    Filed: February 24, 2020
    Publication date: August 26, 2021
    Inventors: Sung-Taeg Kang, Pranav Kalavade, Owen W. Jungroth, Prasanna Srinivasan
  • Publication number: 20210134811
    Abstract: Systems and methods of forming such include method, forming a memory gate (MG) stack in a first region, forming a sacrificial polysilicon gate on a high-k dielectric in a second region, wherein the first and second regions are disposed in a single substrate. Then a select gate (SG) may be formed adjacent to the MG stack in the first region of the semiconductor substrate. The sacrificial polysilicon gate may be replaced with a metal gate to form a logic field effect transistor (FET) in the second region. The surfaces of the substrate in the first region and the second region are substantially co-planar.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 6, 2021
    Applicant: Cypress Semiconductor Corporation
    Inventors: Chun Chen, James Pak, Unsoon Kim, Inkuk Kang, Sung-Taeg Kang, Kuo Tung Chang
  • Patent number: 10872898
    Abstract: Systems and methods of forming such include method, forming a memory gate (MG) stack in a first region, forming a sacrificial polysilicon gate on a high-k dielectric in a second region, wherein the first and second regions are disposed in a single substrate. Then a select gate (SG) may be formed adjacent to the MG stack in the first region of the semiconductor substrate. The sacrificial polysilicon gate may be replaced with a metal gate to form a logic field effect transistor (FET) in the second region. The surfaces of the substrate in the first region and the second region are substantially co-planar.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: December 22, 2020
    Assignee: Cypress Semiconductor Corporation
    Inventors: Chun Chen, James Pak, Unsoon Kim, Inkuk Kang, Sung-Taeg Kang, Kuo Tung Chang
  • Patent number: 10716822
    Abstract: Provided are a seed of new soybean cultivar SCEL-1, a plant body of the seed or a part of the plant body, and an extract obtained from the seed.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: July 21, 2020
    Assignees: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY, REPUBLIC OF KOREA (MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION)
    Inventors: Jung Kyung Moon, Man Soo Choi, Soo Kwon Park, Nam Hee Jeong, Yongsoo Choi, Sungdo Ha, Cheol-Ho Pan, Sung Taeg Kang, Soon Chun Jeong
  • Publication number: 20200000866
    Abstract: Provided are a seed of new soybean cultivar SCEL-1, a plant body of the seed or a part of the plant body, and an extract obtained from the seed.
    Type: Application
    Filed: December 6, 2018
    Publication date: January 2, 2020
    Applicants: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY, REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION)
    Inventors: Jung Kyung MOON, Man Soo CHOI, Soo Kwon PARK, Nam Hee JEONG, Yongsoo CHOI, Sungdo HA, Cheol-Ho PAN, Sung Taeg KANG, Soon Chun JEONG
  • Patent number: 10497710
    Abstract: A semiconductor device and method of making the same are disclosed. The semiconductor device includes a metal-gate logic transistor formed in a first region of a substrate, and a non-volatile memory (NVM) cell including a select gate and a memory gate formed in a first recess in a second region of the same substrate, wherein the recess is recessed relative to a first surface of the substrate. The metal-gate logic transistor includes a planarized surface above and substantially parallel to the first surface, and top surfaces of the select gate and memory gate are approximately at or below an elevation of the planarized surface of the metal-gate. Generally, at least one of the top surfaces of the select gate or the memory gate includes a silicide formed thereon. Other embodiments are also disclosed.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: December 3, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Sung-Taeg Kang, James Pak, Unsoon Kim, Inkuk Kang, Chun Chen, Kuo-Tung Chang
  • Publication number: 20190304990
    Abstract: A semiconductor device and method of fabricating the same are disclosed. The method includes depositing a polysilicon gate layer over a gate dielectric formed over a surface of a substrate in a peripheral region, forming a dielectric layer over the polysilicon gate layer and depositing a height-enhancing (HE) film over the dielectric layer. The HE film, the dielectric layer, the polysilicon gate layer and the gate dielectric are then patterned for a high-voltage Field Effect Transistor (HVFET) gate to be formed in the peripheral region. A high energy implant is performed to form at least one lightly doped region in a source or drain region in the substrate adjacent to the HVFET gate. The HE film is then removed, and a low voltage (LV) logic FET formed on the substrate in the peripheral region. In one embodiment, the LV logic FET is a high-k metal-gate logic FET.
    Type: Application
    Filed: March 4, 2019
    Publication date: October 3, 2019
    Applicant: Cypress Semiconductor Corporation
    Inventors: Chun Chen, James Pak, Unsoon KIM, Inkuk Kang, Sung-Taeg Kang, Kuo Tung Chang
  • Patent number: 10242996
    Abstract: A semiconductor device and method of fabricating the same are disclosed. The method includes depositing a polysilicon gate layer over a gate dielectric formed over a surface of a substrate in a peripheral region, forming a dielectric layer over the polysilicon gate layer and depositing a height-enhancing (HE) film over the dielectric layer. The HE film, the dielectric layer, the polysilicon gate layer and the gate dielectric are then patterned for a high-voltage Field Effect Transistor (HVFET) gate to be formed in the peripheral region. A high energy implant is performed to form at least one lightly doped region in a source or drain region in the substrate adjacent to the HVFET gate. The HE film is then removed, and a low voltage (LV) logic FET formed on the substrate in the peripheral region. In one embodiment, the LV logic FET is a high-k metal-gate logic FET.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: March 26, 2019
    Assignee: Cypress Semiconductor Corporation
    Inventors: Chun Chen, James Pak, Unsoon Kim, Inkuk Kang, Sung-Taeg Kang, Kuo Tung Chang
  • Publication number: 20190027487
    Abstract: A semiconductor device and method of fabricating the same are disclosed. The method includes depositing a polysilicon gate layer over a gate dielectric formed over a surface of a substrate in a peripheral region, forming a dielectric layer over the polysilicon gate layer and depositing a height-enhancing (HE) film over the dielectric layer. The HE film, the dielectric layer, the polysilicon gate layer and the gate dielectric are then patterned for a high-voltage Field Effect Transistor (HVFET) gate to be formed in the peripheral region. A high energy implant is performed to form at least one lightly doped region in a source or drain region in the substrate adjacent to the HVFET gate. The HE film is then removed, and a low voltage (LV) logic FET formed on the substrate in the peripheral region. In one embodiment, the LV logic FET is a high-k metal-gate logic FET.
    Type: Application
    Filed: December 20, 2017
    Publication date: January 24, 2019
    Applicant: Cypress Semiconductor Corporation
    Inventors: Chun Chen, James Pak, Unsoon Kim, Inkuk Kang, Sung-Taeg Kang, Kuo Tung Chang
  • Publication number: 20190027484
    Abstract: Systems and methods of forming such include method, forming a memory gate (MG) stack in a first region, forming a sacrificial polysilicon gate on a high-k dielectric in a second region, wherein the first and second regions are disposed in a single substrate. Then a select gate (SG) may be formed adjacent to the MG stack in the first region of the semiconductor substrate. The sacrificial polysilicon gate may be replaced with a metal gate to form a logic field effect transistor (FET) in the second region. The surfaces of the substrate in the first region and the second region are substantially co-planar.
    Type: Application
    Filed: December 20, 2017
    Publication date: January 24, 2019
    Applicant: Cypress Semiconductor Corporation
    Inventors: Chun Chen, James Pak, Unsoon Kim, Inkuk Kang, Sung-Taeg Kang, Kuo Tung Chang
  • Patent number: 10153349
    Abstract: A method of forming a split gate memory cell structure using a substrate includes forming a gate stack comprising a select gate and a dielectric portion overlying the select gate. A charge storage layer is formed over the substrate including over the gate stack. A first sidewall spacer of conductive material is formed along a first sidewall of the gate stack extending past a top of the select gate. A second sidewall spacer of dielectric material is formed along the first sidewall on the first sidewall spacer. A portion of the first sidewall spacer is silicided using the second sidewall spacer as a mask whereby silicide does not extend to the charge storage layer.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: December 11, 2018
    Assignee: NXP USA, Inc.
    Inventors: Cheong Min Hong, Sung-Taeg Kang
  • Publication number: 20180166458
    Abstract: A semiconductor device and method of making the same are disclosed. The semiconductor device includes a metal-gate logic transistor formed in a first region of a substrate, and a non-volatile memory (NVM) cell including a select gate and a memory gate formed in a first recess in a second region of the same substrate, wherein the recess is recessed relative to a first surface of the substrate. The metal-gate logic transistor includes a planarized surface above and substantially parallel to the first surface, and top surfaces of the select gate and memory gate are approximately at or below an elevation of the planarized surface of the metal-gate. Generally, at least one of the top surfaces of the select gate or the memory gate includes a silicide formed thereon. Other embodiments are also disclosed.
    Type: Application
    Filed: October 12, 2017
    Publication date: June 14, 2018
    Applicant: Cypress Semiconductor Corporation
    Inventors: Sung-Taeg Kang, James Pak, Unsoon KIM, Inkuk Kang, Chun Chen, Kuo-Tung Chang
  • Patent number: 9853039
    Abstract: A semiconductor device including a non-volatile memory (NVM) cell and method of making the same are disclosed. The semiconductor device includes a metal-gate logic transistor formed on a logic region of a substrate, and the NVM cell integrally formed in a first recess in a memory region of the same substrate, wherein the first recess is recessed relative to a first surface of the substrate in the logic region. Generally, the metal-gate logic transistor further including a planarized surface above and substantially parallel to the first surface of the substrate in the logic region, and the NVM cell is arranged below an elevation of the planarized surface of the metal-gate. In some embodiments, logic transistor is a High-k Metal-gate (HKMG) logic transistor with a gate structure including a metal-gate and a high-k gate dielectric. Other embodiments are also disclosed.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: December 26, 2017
    Assignee: Cypress Semiconductor Corporation
    Inventors: Sung-Taeg Kang, James Pak, Unsoon Kim, Inkuk Kang, Chun Chen, Kuo-Tung Chang
  • Patent number: 9818755
    Abstract: A semiconductor device including a non-volatile memory (NVM) cell and method of making the same are disclosed. The semiconductor device includes a metal-gate logic transistor formed on a logic region of a substrate, and the NVM cell integrally formed in a first recess in a memory region of the same substrate, wherein the first recess is recessed relative to a first surface of the substrate in the logic region. Generally, the metal-gate logic transistor further including a planarized surface above and substantially parallel to the first surface of the substrate in the logic region, and the NVM cell is arranged below an elevation of the planarized surface of the metal-gate. In some embodiments, logic transistor is a High-k Metal-gate (HKMG) logic transistor with a gate structure including a metal-gate and a high-k gate dielectric. Other embodiments are also disclosed.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: November 14, 2017
    Assignee: Cypress Semiconductor Corporation
    Inventors: Sung-Taeg Kang, James Pak, Unsoon Kim, Inkuk Kang, Chun Chen, Kuo-Tung Chang