Patents by Inventor Sung-Wei Lin

Sung-Wei Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5218568
    Abstract: An electrically-erasable, electrically-programmable read-only memory cell 10 is formed at a face of a layer of semiconductor 30 of a first conductivity type. A first source/drain region 16 and a second source/drain region 20 are formed in the face of layer of semiconductor 30 of a second conductivity type opposite the first conductivity type and spaced by a first channel area 50. A third source/drain region 18 is formed in the face of semiconductor layer 30 of the second conductivity type spaced from second source/drain region 20 by a second channel area 52. A thick insulator region 44 is formed adjacent at least a portion of second source/drain region 20 and includes a lateral margin of sloped thickness overlying a corresponding lateral margin of second source/drain region 20. The corresponding lateral margin of second source/drain region 20 has a graded dopant concentration directly proportionate with the sloped thickness of the overlying lateral margin of thick insulator region 44.
    Type: Grant
    Filed: December 17, 1991
    Date of Patent: June 8, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Sung-Wei Lin, Manzur Gill, Inn K. Lee
  • Patent number: 5187683
    Abstract: A method is described for programming a semiconductor array of EEPROM cells. A selected cell is connected, by definition, to a selected source-column line, a selected drain-column line and a selected wordline. Each deselected memory cell in the array is connected to a deselected source-column line, a deselected drain-column line and/or a deselected wordline. The method includes preselecting first, second, third, fourth and fifth programming voltages such that the second programming voltage is more positive than the first programming voltage and such that the third, fourth and fifth programming voltages are intermediate between the first and second programming voltages. The first programming voltage is applied at least to a selected column line and to each of the same-type deselected column lines. The third programming voltage is applied to the selected wordline and the fourth programming voltage is applied to each deselected wordline.
    Type: Grant
    Filed: August 31, 1990
    Date of Patent: February 16, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sung-Wei Lin, Sebastiano D'Arrigo
  • Patent number: 5177705
    Abstract: A method is described for programming an array of EEPROM cells. Programming occurs through a Fowler-Nordheim tunnel window (34) between a source bitline (24) and a floating gate conductor (42) of a selected cell. The voltages applied to the control gate and to the source are selected to differ sufficiently to cause electrons to be drawn through the tunnel window (34) from the source region (24) to the floating gate conductor (42). The non-selected bitlines have a voltage impressed thereon that is of sufficient value to prevent inadvertent programming of cells in the selected row. The non-selected wordlines (48) have a voltage impressed thereon that is of sufficient value to prevent erasing of programmed non-selected cells.
    Type: Grant
    Filed: September 5, 1989
    Date of Patent: January 5, 1993
    Assignee: Texas Instruments Incorporated
    Inventors: David J. McElroy, Sebastiano D'Arrigo, Manzur Gill, Sung-Wei Lin
  • Patent number: 5168335
    Abstract: A pair of electrically erasable, electrically programmable memory cells are formed at a face of a semiconductor layer (10) and include respective source regions (30a, 30b), a shared drain region (28) and respective channel regions (38a, 38b). Each cell has a floating gate conductor (46a, 46b) that controls the conductance of a respective subchannel region (74a, 74b) and may be programmed through Fowler-Nordheim electron tunneling through a respective tunnel oxide window (40a, 40b) from a respective source region (30a, 30b). A field plate conductor (40a) controls the conductance of respective subchannel regions (70a, 70b) within each channel region (38a, 38b). A word line or control gate conductor (62) is insulatively disposed adjacent respective third, remaining channel subregions (53a, 53b) and further is disposed insulatively adjacent the floating gates (46a, 46b) to program or erase them.
    Type: Grant
    Filed: August 6, 1991
    Date of Patent: December 1, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Iano D'Arrigo, Manzur Gill, Sung-Wei Lin
  • Patent number: 5156991
    Abstract: An electrically-erasable, programmable ROM cell, or an EEPROM cell, is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small tunnel window, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. The bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ratio of control gate to floating gate capacitance. Programming and erasing are provided by the tunnel window are near or above the channel side of the source. The window has a thinner dielectric than the remainder of the floating gate, to allow Fowler-Nordheim tunneling. By using dedicated drain or ground lines, rather than a virtual-ground layout, and by using thick oxide for isolation between bitlines, the floating gate can extend onto adjacent bitlines and isolation area, resulting in a favorable coupling ratio.
    Type: Grant
    Filed: January 31, 1991
    Date of Patent: October 20, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo, Sung-Wei Lin
  • Patent number: 5155055
    Abstract: An electrically-erasable, electrically-programmable ROM or an EEPROM is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small self-aligned tunnel window positioned on the opposite side of the source from the channel and drain, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. In this cell, the bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ratio of control gate to floating gate capacitance. Programming and erasing are provided by the tunnel window area on the outside of the source (spaced from the channel). The tunnel window has a thinner dielectric than the remainder of the floating gate to allow Fowler-Nordheim tunneling.
    Type: Grant
    Filed: April 15, 1991
    Date of Patent: October 13, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sung-Wei Lin, C. Rinn Cleavelin, David J. McElroy
  • Patent number: 5081055
    Abstract: An electrically-erasable, programmable ROM cell, or an EEPROM cell, is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small tunnel window, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. The bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ration of control gate to floating gate capacitance. Programming and erasure are provided by the tunnel window area, which is located near or above the channel side of the source. The window has a thinner dielectric than the remainder of the floating gate, to allow Fowler-Nordheim tunneling. By using dedicated drain or ground lines, rather than a virtual-ground layout, and by using thick oxide for isolation between bitlines, the floating gate can extend onto adjacent bitlines and isolation area, resulting in a favorable coupling ratio.
    Type: Grant
    Filed: January 31, 1991
    Date of Patent: January 14, 1992
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo, Sung-Wei Lin
  • Patent number: 5060195
    Abstract: An electrically-erasable, electrically-programmable, read-only memory cell array is formed in pairs at a face of a semiconductor substrate (11). Each memory cell includes a source region (14a) and a shaped drain region (16), with at corresponding channel region (18a) in between. A Fowler-Nordheim tunnel window subregion (15a) of the source region (14a) is located opposite the channel (18a). A floating gate conductor (FG) includes a channel section (32a) and a tunnel window section (34a). The floating gate conductor is formed in two stages, the first stage forming the channel section (32a) from a first-level polysilicon (P1A). This floating gate channel section (32a/P1A) is used as a self-alignment implant mask for the source (14a) and drain (16) regions, such that the channel junction edges are aligned with the coresponding edges of the channel section. A control gate conductor (CG) is disposed over the floating gate conductor (FG), insulated by an intervening interlevel dielectric (ILD).
    Type: Grant
    Filed: October 11, 1990
    Date of Patent: October 22, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sung-Wei Lin
  • Patent number: 5047981
    Abstract: A method for either block- or bit-erasing is described for an array of EEPROM cells, each having transistor channel regions with subchannels thereof respectively controlled by a floating gate conductor and a control gate. Erasing occurs through a Fowler-Nordheim tunnel window (34) between a source bit line (24) and a floating gate conductor (42) of a selected cell. For one or more selected cells, first and second erasing voltages are selected such that the selected source bit line (24) is more positive than the selected word line (48) by a voltage sufficient to cause excess electrons on the floating gate conductor (42) to be drawn through the tunnel window (34) to the source region (24). The nonselected word lines (48) have a nonerasing voltage impressed thereon that is sufficiently close to that of selected source regions that no erase disturb will occur in nonselected cells.
    Type: Grant
    Filed: June 30, 1989
    Date of Patent: September 10, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sung-Wei Lin, Iano D'Arrigo, David McElroy
  • Patent number: 5017980
    Abstract: An electrically-erasable, programmable ROM cell, or an EEPROM cell, is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small tunnel window, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. The bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ratio of control gate to floating gate capacitance. Programming and erasure are provided by the tunnel window area, which is located near or above the channel side of the source. The window has a thinner dielectric than the remainder of the floating gate, to allow Fowler-Nordheim tunneling. By using dedicated drain or ground lines, rather than a virtual-ground layout, and by using thick oxide for isolation between bitlines, the floating gate can extend onto adjacent bitlines and isolation area, resulting in a favorable coupling ratio.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: May 21, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo, Sung-Wei Lin
  • Patent number: 5012307
    Abstract: An electrically-erasable, programmable ROM cell, or an EEPROM cell, is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small tunnel window, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. The bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ratio of control gate to floating gate capacitance. Programming and erasing are provided by the tunnel window are near or above the channel side of the source. The window has a thinner dielectric than the remainder of the floating gate, to allow Fowler-Nordheim tunneling. By using dedicated drain or ground lines, rather than a virtual-ground layout, and by using thick oxide for isolation between bitlines, the floating gate can extend onto adjacent bitlines and isolation area, resulting in a favorable coupling ratio.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: April 30, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sebastiano D'Arrigo, Sung-Wei Lin
  • Patent number: 5010028
    Abstract: An electrically-erasable, electrically-programmable, read-only memory cell array is formed in pairs at a face of a semiconductor substrate (11). Each memory cell includes a source region (14a) and a shared drain region (16), with a corresponding channel region (18a) in between. A Fowler-Nordheim tunnel window subregion (15a) of the source region (14a) is located opposite the channel (18a). A floating gate conductor (FG) includes a channel section (32a) and a tunnel window section (34a). The floating gate conductor is formed in two stages, the first stage forming the channel section (32a) from a first-level polysilicon (PlA). This floating gate channel section (32a/PlA) is used as a self-alignment implant mask for the source (14a) and drain (16) regions, such that the channel junction edges are aligned with the corresponding edges of the channel section. A control gate conductor (CG) is disposed over the floating gate conductor (FG), insulated by an intervening interlevel dielectric (ILD).
    Type: Grant
    Filed: December 29, 1989
    Date of Patent: April 23, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sung-Wei Lin
  • Patent number: 5008721
    Abstract: An electrically-erasable, electrically-programmable ROM or an EEPROM is constructed using an enhancement transistor merged with a floating-gate transistor, where the floating-gate transistor has a small self-aligned tunnel window positioned on the opposite side of the source from the channel and drain, in a contact-free cell layout, enhancing the ease of manufacture and reducing cell size. In this cell, the bitlines and source/drain regions are buried beneath relatively thick silicon oxide, which allows a favorable ratio of control gate to floating gate capacitance. Programming and erasing are provided by the tunnel window area on the outside of the source (spaced from the channel). The tunnel window has a thinner dielectric than the remainder of the floating gate to allow Fowler-Nordheim tunneling.
    Type: Grant
    Filed: March 15, 1990
    Date of Patent: April 16, 1991
    Assignee: Texas Instruments Incorporated
    Inventors: Manzur Gill, Sung-Wei Lin, C. Rinn Cleavelin, David J. McElroy
  • Patent number: 4823318
    Abstract: A circuit for applying reading, programming and erasing voltages to a wordline in a floating-gate-type EEPROM cell array comprising four P-channel transistors and two N-channel transistors as well as four switches. The circuit comprises a two-transistor inverter with a feedback transistor and three isolating transistors that prevent excessive currents and voltages from damaging internal and external circuit components.
    Type: Grant
    Filed: September 2, 1988
    Date of Patent: April 18, 1989
    Assignee: Texas Instruments Incorporated
    Inventors: Sebastiano D'Arrigo, Giuliano Imondi, Sung-Wei Lin, Manzur Gill