Patents by Inventor Sunipa Saha

Sunipa Saha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190351233
    Abstract: Some systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One method may include displaying a plurality of vectors on a display screen wherein each vector represents a different combination of three or more electro-stimulation electrodes, determining an electrical impedance for each of the plurality of vectors, displaying on the display screen the electrical impedance for each of the plurality of vectors, receiving a selection of a set of the plurality of vectors, determining, for each of the vectors in the set of vectors, a capture threshold, displaying on the display screen the capture threshold for each of the vectors in the set of vectors, receiving a selection of a vector from the set of vectors for delivery of electrical stimulation to the patient's heart, and programming the electro-stimulation device electrical stimulation to the patient's heart via the selected vector.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Holly E. Rockweiler, Sunipa Saha, Keith L. Herrmann, Yinghong Yu, Joel A. Krueger
  • Publication number: 20190343415
    Abstract: Systems and methods for ambulatory detection of medical events such as cardiac arrhythmia are described herein. An embodiment of an arrhythmia detection system may include a detection criterion circuit that determines a patient-specific detection criterion using a baseline cardiac characteristic when the patient is free of cardiac arrhythmias. The detection criterion circuit generates a patient-specific threshold of a signal metric by adjusting a population-based threshold of the signal metric, where the manner and the amount of adjustment is based on information about patient baseline cardiac characteristic. The arrhythmia detection system detects an arrhythmia episode using a physiologic signal sensed from the patient and the patient-specific arrhythmia detection threshold.
    Type: Application
    Filed: April 18, 2019
    Publication date: November 14, 2019
    Inventors: Sunipa Saha, David L. Perschbacher, Deepa Mahajan
  • Patent number: 10441795
    Abstract: Systems and methods for providing CRT therapy to a patient with an implanted multi-site pacing medical device. In one example, an intrinsic electrical delay associated with each of two or more left ventricle electrodes may be determined. The intrinsic electrical delay associated with each of the two or more left ventricle electrodes may be compared to an electrical delay threshold. If the electrical delay associated with one or fewer left ventricle electrodes is greater than the electrical delay threshold, a single left ventricle electrode may be selected for use during subsequent CRT therapy. If the electrical delay associated with more than one left ventricle electrode is greater than the electrical delay threshold, two or more of the left ventricle electrodes may be selected for use during subsequent CRT therapy.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: October 15, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Keith L. Herrmann, Holly E. Rockweiler, Sunipa Saha, Benjamin J Nyquist
  • Patent number: 10434318
    Abstract: Some systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One method may include displaying a plurality of vectors on a display screen wherein each vector represents a different combination of three or more electro-stimulation electrodes, determining an electrical impedance for each of the plurality of vectors, displaying on the display screen the electrical impedance for each of the plurality of vectors, receiving a selection of a set of the plurality of vectors, determining, for each of the vectors in the set of vectors, a capture threshold, displaying on the display screen the capture threshold for each of the vectors in the set of vectors, receiving a selection of a vector from the set of vectors for delivery of electrical stimulation to the patient's heart, and programming the electro-stimulation device electrical stimulation to the patient's heart via the selected vector.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: October 8, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Holly E. Rockweiler, Sunipa Saha, Keith L. Herrmann, Yinghong Yu, Joel A. Krueger
  • Patent number: 10413203
    Abstract: Some method examples may include pacing a heart with cardiac paces, sensing a physiological signal for use in detecting pace-induced phrenic nerve stimulation, performing a baseline level determination process to identify a baseline level for the sensed physiological signal, and detecting pace-induced phrenic nerve stimulation using the sensed physiological signal and the calculated baseline level. Detecting pace-induced phrenic nerve stimulation may include sampling the sensed physiological signal during each of a plurality of cardiac cycles to provide sampled signals and calculating the baseline level for the physiological signal using the sampled signals. Sampling the sensed physiological signal may include sampling the signal during a time window defined using a pace time with each of the cardiac cycles to avoid cardiac components and phrenic nerve stimulation components in the sampled signal.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 17, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Yanting Dong, Holly Rockweiler
  • Publication number: 20190232067
    Abstract: Systems and methods for managing machine-generated alert notifications of medical events detected from one or more patients are described herein. An embodiment of a data management system may receive an adjudication of a medical event episode including an episode characterization. A storage unit stores an association between one or more episode characterizations and corresponding detection algorithms for detecting a medical event having respective episode characterizations. An episode management circuit may detect from a subsequent episode, using the stored association, a medical event having an episode characterization of at least one medical event episode presented for adjudication, and schedule presenting at least a portion of the subsequent episode based on the detection.
    Type: Application
    Filed: January 29, 2019
    Publication date: August 1, 2019
    Inventors: Deepa Mahajan, David L. Perschbacher, Sunipa Saha
  • Publication number: 20190231207
    Abstract: Systems and methods for managing cardiac arrhythmias are discussed. A data management system receives a first detection algorithm including a detection criterion for detecting a cardiac arrhythmia. An arrhythmia detector detects arrhythmia episodes from a physiologic signal using a second detection algorithm that is different from and has a higher sensitivity for detecting the cardiac arrhythmia than the first detection algorithm. The arrhythmia detector assigns a detection indicator to each of the detected arrhythmia episodes. The detection indicator indicates a likelihood that the detected arrhythmia episode satisfies the detection criterion of the first detection algorithm. The system prioritizes the detected arrhythmia episodes according to the assigned detection indicators, and outputs the arrhythmia episodes to a user or a process according to the episode prioritization.
    Type: Application
    Filed: January 29, 2019
    Publication date: August 1, 2019
    Inventors: David L. Perschbacher, Sunipa Saha, Deepa Mahajan
  • Publication number: 20190232065
    Abstract: Systems and methods for monitoring chronic over-pacing (COP) to the heart are discussed herein. In an embodiment, a system includes a receiver circuit to receive information about pacing rates of a plurality of paced heart beats, and a pacing analyzer circuit to generate a pacing rate distribution using pacing rates of the plurality of the paced heart beats. The pacing rate distribution includes a pacing rate histogram. The pacing analyzer circuit may recognize a morphological pattern from the pacing rate distribution, and detect a COP indication using the extracted feature. A programmer circuit adjusts one or more therapy parameters in response to the detected. COP indication.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 1, 2019
    Inventors: David L. Perschbacher, James O. Gilkerson, Sunipa Saha, Deepa Mahajan
  • Patent number: 10314502
    Abstract: Systems and methods for evaluating multiple candidate sensing vectors for use in sensing electrical activity of a heart are disclosed. The system can sense physiologic signals using each of a plurality of candidate sensing vectors, and generate respective signal intensity indicators and interference indicators using the physiologic signals sensed by using the respective sensing vectors. The system can also receive electrode information of each of the candidate sensing vectors, including information about sensing electrodes that are also used for delivering cardiac electrostimulation. The system can rank at least some of the plurality of candidate sensing vectors according to the signal intensity indicators, the interference indicators, and the electrode information. The system can also include a user interface for displaying the ranked sensing vectors, and allowing the user to select at least one sensing vector for use in sensing the cardiac electrical activity.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: June 11, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Les N. Peterson, Sunipa Saha, Adam MacEwen
  • Publication number: 20190167142
    Abstract: Systems and methods for detecting slow and persistent rhythms, such as indicative of ventricular response to atrial tachyarrhythmia (AT), are described herein. An arrhythmia detection system monitors patient ventricular heart rate, and identifies slow heart beats with corresponding heart rates falling below a rate threshold during a detection period. The system identifies one or more sustained slow beat (SSB) sequences each including two or more slow heart beats. The system determines a first prevalence indicator of the identified slow heart beats, and a second prevalence indicator of the identified SSB sequences during the detection period. An arrhythmia detector circuit detects a slow and persistent rhythm using the first and second prevalence indicators.
    Type: Application
    Filed: November 5, 2018
    Publication date: June 6, 2019
    Inventors: David L. Perschbacher, Sunipa Saha, Deepa Mahajan
  • Publication number: 20190172583
    Abstract: Described herein are systems and methods for classifying clinical episodes in order to more accurately generate alerts for those episodes that warrant them. In some embodiments, alerts are only generated for those episodes that are new or different from previous episodes, where the previous episodes have been found to be not significant enough to warrant an alert.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 6, 2019
    Inventors: Deepa Mahajan, Bhaskar Sen, Sunipa Saha, David L. Perschbacher
  • Publication number: 20190060652
    Abstract: An example of a system includes an implantable medical device (IMD) for implantation in a patient, where the IMD includes a cardiac pace generator, phrenic nerve stimulation (PS) sensor, a memory, and a controller, and where the controller is operably connected to the cardiac pace generator to generate cardiac paces. The controller is configured to provide a trigger for conducting a PS detection procedure and perform the PS detection procedure in response to the trigger. In performing the PS detection procedure the controller is configured to receive a signal from the sensor, detect PS using the signal from the sensor, and record the PS detection in storage within the IMD.
    Type: Application
    Filed: October 11, 2018
    Publication date: February 28, 2019
    Inventors: Holly E. Rockweiler, Sunipa Saha, Aaron R. McCabe, Krzysztof Z. Siejko
  • Publication number: 20190029552
    Abstract: An apparatus comprises an arrhythmia detection circuit configured to: receive a cardiac signal representative of cardiac activity of a subject; apply a first arrhythmia detection criteria to the received cardiac signal; apply, in response to the applied first arrhythmia detection criteria producing a positive indication of arrhythmia, a second arrhythmia detection criteria to the received cardiac signal, wherein the second arrhythmia detection criteria is more specific to detection of arrhythmia than the first detection criteria; detect, in response to the applied first and second arrhythmia detection criteria, a sensing event indicating one or both of the first and second arrhythmia detection criteria are susceptible to false indications of arrhythmia; and adjust, in response to a detected sensing event, sensitivity or specificity of one or both of the first and second arrhythmia detection criteria.
    Type: Application
    Filed: July 23, 2018
    Publication date: January 31, 2019
    Inventors: David L. Perschbacher, Sunipa Saha, Deepa Mahajan
  • Patent number: 10183169
    Abstract: Systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One illustrative method may include delivering electrical stimulation at a first voltage to each vector in a first set of two or more vectors of a multi-vector medical system, determining whether the delivered electrical stimulation at the first voltage resulted in capture for each of the vectors in the first set of two or more vectors, identifying those vectors of the first set of two or more vectors that were determined to result in capture as a second set of vectors, delivering electrical stimulation at a second voltage that is lower than the first voltage to each vector in the second set of vectors, and determining whether the delivered electrical stimulation at the second voltage resulted in capture for each of the vectors in the second set of vectors.
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: January 22, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Holly E. Rockweiler, Sunipa Saha, Keith L. Herrmann, Yinghong Yu, Joel A. Krueger
  • Publication number: 20190008384
    Abstract: Systems and methods for managing machine-generated medical events detected from one or more patients are described herein. A medical event management system includes an event analyzer circuit to detect a medical event using physiological data from a patient-triggered episode acquired from a medical device. The event analyzer circuit determines a confidence score of the medical event detection, and generates an alignment indicator indicating a degree of concordance between the detected medical event and the information about the patient-triggered episode. The system assigns priority information to the patient-triggered episode using the generated alignment indicator and the confidence score of the detection. An output circuit can output the received physiological information to a user or a process according to the assigned priority information.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 10, 2019
    Inventors: Amy Jean Brisben, Qi An, Pramodsingh Hirasingh Thakur, David J. Ternes, JoAnna Trapp Simpson, Viktoria A. Averina, Deepa Mahajan, Sunipa Saha, Krzysztof Z. Siejko
  • Publication number: 20190013087
    Abstract: Systems and methods for managing medical information storage and transmission are discussed. A data management system may include a receiver circuit to receive information about a physiological event sensed from a patient, and an event prioritizer circuit to assign a priority to the received information. A control circuit may perform data reduction of the received information according to the assigned priority. Data reduction at a higher reduction rate is performed on the received information if a lower priority is assigned than if a higher priority is assigned. The system may include an output circuit to output the received information to a user or a process, or to transmit the received information to an external device, according to the assigned priority.
    Type: Application
    Filed: July 2, 2018
    Publication date: January 10, 2019
    Inventors: Deepa Mahajan, David L. Perschbacher, Sunipa Saha
  • Patent number: 10172536
    Abstract: A catheter system includes a mapping catheter including a plurality of mapping electrodes, each mapping electrode configured to sense signals associated with an anatomical structure. The catheter system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive the signals sensed by the plurality of mapping electrodes, characterize the signals sensed by the plurality of mapping electrodes based on a signal parameter of the sensed signals, and generate an output of a quality of contact of the plurality of mapping electrodes with the anatomical structure based on the signal characterization.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: January 8, 2019
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Barun Maskara, Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Shibaji Shome, Sunipa Saha, Allan C. Shuros, Scott A. Meyer
  • Patent number: 10166398
    Abstract: An apparatus comprises a stimulus circuit, a switch circuit, and a control circuit. The stimulus circuit is configured to provide electrical pulse stimulation to the plurality of electrodes. The switch circuit is configured to electrically couple different combinations of the electrodes to the stimulus circuit. The control circuit is to configure a stimulation vector that includes a first vector electrode and a plurality of other electrodes electrically coupled together to form a second combined vector electrode. The control circuit includes a capture detection sub-circuit configured to determine individual capture stimulation thresholds between the first vector electrode and each single electrode of the combined vector electrode. The control circuit is configured to determine a capture stimulation threshold of the stimulation vector using the determined individual capture thresholds.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: January 1, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: David J. Ternes, William J. Linder, Sunipa Saha, David L. Perschbacher
  • Patent number: 10124174
    Abstract: An example of a system includes an implantable medical device (IMD) for implantation in a patient, where the IMD includes a cardiac pace generator, phrenic nerve stimulation (PS) sensor, a memory, and a controller, and where the controller is operably connected to the cardiac pace generator to generate cardiac paces. The controller is configured to provide a trigger for conducting a PS detection procedure and perform the PS detection procedure in response to the trigger. In performing the PS detection procedure the controller is configured to receive a signal from the sensor, detect PS using the signal from the sensor, and record the PS detection in storage within the IMD.
    Type: Grant
    Filed: August 16, 2016
    Date of Patent: November 13, 2018
    Assignee: Cardiac Pacemakes, Inc.
    Inventors: Holly Rockweiler, Sunipa Saha, Aaron R. McCabe, Krzysztof Z. Siejko
  • Publication number: 20180310892
    Abstract: Systems and methods for managing machine-generated medical alerts associated with physiological events detected from one or more patients are described herein. An alert management system may receive medical events detected from a patient and physiological data associated with patient historical medical alerts. The system comprises an alert prioritizer circuit to generate an event priority indicator for the detected medical event, using a comparison between the detected medical event and the physiological data associated with patient historical medical alerts. The system can identify prolific alert patients using the information about the historical medical alerts. The alert prioritizer circuit can adjust a priority of the detected medical event, and an output circuit can present a priority to a user or a process using the event priority indicator and the identification of prolific alert patient.
    Type: Application
    Filed: May 1, 2018
    Publication date: November 1, 2018
    Inventors: David L. Perschbacher, Sunipa Saha, JoAnna Trapp Simpson, Keith Mattson