Patents by Inventor Sunipa Saha

Sunipa Saha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9730600
    Abstract: Medical devices and methods for using medical devices are disclosed. An example mapping medical device may include a catheter shaft with a plurality of electrodes. The catheter shaft may be coupled to a processor. The processor may be capable of collecting a first set of signals from a first location, collecting a second set of signals from a second location, characterizing the first set of signals over a first time period, characterizing the second set of signals over a second time period, comparing the first set of signals to the second set of signals and matching a first signal from the first set of signals with a second signal from the second set of signals.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: August 15, 2017
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Allan C. Shuros, Barun Maskara, Shibaji Shome, Shantha Arcot-Krishnamurthy, Sunipa Saha, Scott A. Meyer
  • Publication number: 20170173342
    Abstract: Systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One illustrative method may include delivering electrical stimulation at a first voltage to each vector in a first set of two or more vectors of a multi-vector medical system, determining whether the delivered electrical stimulation at the first voltage resulted in capture for each of the vectors in the first set of two or more vectors, identifying those vectors of the first set of two or more vectors that were determined to result in capture as a second set of vectors, delivering electrical stimulation at a second voltage that is lower than the first voltage to each vector in the second set of vectors, and determining whether the delivered electrical stimulation at the second voltage resulted in capture for each of the vectors in the second set of vectors.
    Type: Application
    Filed: March 9, 2017
    Publication date: June 22, 2017
    Inventors: Holly E. Rockweiler, Sunipa Saha, Keith L. Herrmann, Yinghong Yu, Joel A. Krueger
  • Patent number: 9681817
    Abstract: A method for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the anatomical structure, identifying at least one of the electrodes not in direct contact with the anatomical structure, and adjusting the activation signals sensed by each of the plurality of electrodes based on the activation signals sensed by the identified at least one of the electrodes not in direct contact with the anatomical structure.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: June 20, 2017
    Assignee: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Barun Maskara, Shantha Arcot-Krishnamurthy, Pramodsingh H. Thakur, Allan C. Shuros, Sunipa Saha, Shibaji Shome
  • Publication number: 20170157323
    Abstract: In some examples, a method of adjusting a cardiovascular medication administration protocol for a subject includes receiving heart contractility surrogate information, obtained from a sensor configured to sense information about a heart of the subject, during a specified acute time period following an initiation or change in medication administration to the subject, determining, using a comparator circuit, whether the heart contractility surrogate information indicates an occurrence of at least a specified change in heart contractility during the specified acute time period following the initiation or change in medication administration to the subject, and adjusting the medication administration protocol using the determination of whether the heart contractility surrogate information indicates the occurrence of at least the specified change in heart contractility during the specified acute time period following the initiation or change in medication administration to the subject.
    Type: Application
    Filed: November 29, 2016
    Publication date: June 8, 2017
    Inventors: Sunipa Saha, Pramodsingh Hirasingh Thakur
  • Patent number: 9649498
    Abstract: Various techniques are disclosed for quickly and efficiently determining cardiac pacing vectors that minimize phrenic nerve stimulation.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: May 16, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Deepa Mahajan, Yanting Dong, Sunipa Saha, Holly Rockweiler, Kenneth N. Hayes, Krzysztof Z. Siejko, Clayton S. Foster
  • Publication number: 20170120059
    Abstract: An apparatus comprises a stimulus circuit, a cardiac signal sensing circuit, and a control circuit. The stimulus circuit provides electrical pulse energy to a first pacing channel that includes a first left ventricular (LV) electrode as a cathode and a second pacing channel that includes a second LV electrode as a cathode. The cardiac signal sensing circuit senses cardiac signals using a first sensing channel that includes one of the first LV electrode or the second LV electrode. The control circuit includes a capture detection sub-circuit configured to: initiate delivery of electrical pulse energy to both the first pacing channel and the second pacing channel; sense cardiac depolarization of a ventricle using the first sensing channel; determine first and second cardiac capture pulse energy level thresholds for the first and second pacing channels respectively; and provide indications of the cardiac capture pulse energy level thresholds to a user or process.
    Type: Application
    Filed: October 26, 2016
    Publication date: May 4, 2017
    Inventors: Sunipa Saha, Keith L. Herrmann, Yinghong Yu
  • Patent number: 9636032
    Abstract: A system and method for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the anatomical structure. A most recent intrinsic event at a selected time is determined based on the sensed activation signals and a persistent display of relevant characteristics is generated based on the sensed activation signals of the most recent intrinsic event. The persistent display is updated upon detection of a subsequent intrinsic event.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: May 2, 2017
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Sunipa Saha, Shibaji Shome, Barun Maskara
  • Patent number: 9604065
    Abstract: The disclosure relates to systems and methods for cardiac rhythm management. In some cases, a system may include a pulse generator for generating pacing pulses for stimulating a heart of a patient; a memory; and a sensor configured to sense a response to a unwanted stimulation and to produce a corresponding sensor signal. A processing circuit may receive the sensor signal for a time after one or more pacing pulses, and may derive a time-frequency representation of the sensor signal based on the received sensor signal. The processing circuit may use the time-frequency representation of the sensor signal to help identify unwanted stimulation. Once unwanted stimulation is detected, the processing circuit may change the pacing pulses to help reduce or eliminate the unwanted stimulation.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: March 28, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Holly E. Rockweiler, David C. Olson, Sunipa Saha
  • Patent number: 9597515
    Abstract: Systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One illustrative method may include delivering electrical stimulation at a first voltage to each vector in a first set of two or more vectors of a multi-vector medical system, determining whether the delivered electrical stimulation at the first voltage resulted in capture for each of the vectors in the first set of two or more vectors, identifying those vectors of the first set of two or more vectors that were determined to result in capture as a second set of vectors, delivering electrical stimulation at a second voltage that is lower than the first voltage to each vector in the second set of vectors, and determining whether the delivered electrical stimulation at the second voltage resulted in capture for each of the vectors in the second set of vectors.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: March 21, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Holly E. Rockweiler, Sunipa Saha, Keith L. Herrmann, Yinghong Yu, Joel A. Krueger
  • Publication number: 20170056672
    Abstract: The disclosure relates to systems and methods for cardiac rhythm management. In some cases, a system may include a pulse generator for generating pacing pulses for stimulating a heart of a patient; a memory; and a sensor configured to sense a response to an unwanted stimulation and to produce a corresponding sensor signal. A processing circuit may receive the sensor signal for a time after one or more pacing pulses, and may derive a time-frequency representation of the sensor signal based on the received sensor signal. The processing circuit may use the time-frequency representation of the sensor signal to help identify unwanted stimulation. Once unwanted stimulation is detected, the processing circuit may change the pacing pulses to help reduce or eliminate the unwanted stimulation.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Inventors: Holly E. Rockweiler, David C. Olson, Sunipa Saha
  • Patent number: 9579034
    Abstract: An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 28, 2017
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Shibaji Shome, Barun Maskara, Sunipa Saha
  • Publication number: 20170014631
    Abstract: Systems and methods for providing CRT therapy to a patient with an implanted multi-site pacing medical device. In one example, an intrinsic electrical delay associated with each of two or more left ventricle electrodes may be determined. The intrinsic electrical delay associated with each of the two or more left ventricle electrodes may be compared to an electrical delay threshold. If the electrical delay associated with one or fewer left ventricle electrodes is greater than the electrical delay threshold, a single left ventricle electrode may be selected for use during subsequent CRT therapy. If the electrical delay associated with more than one left ventricle electrode is greater than the electrical delay threshold, two or more of the left ventricle electrodes may be selected for use during subsequent CRT therapy.
    Type: Application
    Filed: September 27, 2016
    Publication date: January 19, 2017
    Inventors: Yinghong Yu, Keith L. Herrmann, Holly Rockweiler, Sunipa Saha, Benjamin J. Nyquist
  • Publication number: 20170000363
    Abstract: Systems and methods for evaluating multiple candidate sensing vectors for use in sensing electrical activity of a heart are disclosed. The system can sense physiologic signals using each of a plurality of candidate sensing vectors, and generate respective signal intensity indicators and interference indicators using the physiologic signals sensed by using the respective sensing vectors. The system can also receive electrode information of each of the candidate sensing vectors, including information about sensing electrodes that are also used for delivering cardiac electrostimulation. The system can rank at least some of the plurality of candidate sensing vectors according to the signal intensity indicators, the interference indicators, and the electrode information. The system can also include a user interface for displaying the ranked sensing vectors, and allowing the user to select at least one sensing vector for use in sensing the cardiac electrical activity.
    Type: Application
    Filed: May 25, 2016
    Publication date: January 5, 2017
    Inventors: Les N. Peterson, Sunipa Saha, Adam MacEwen
  • Patent number: 9533159
    Abstract: The disclosure relates to systems and methods for cardiac rhythm management. In some cases, a system may include a pulse generator for generating pacing pulses for stimulating a heart of a patient; a memory; and a sensor configured to sense a response to a unwanted stimulation and to produce a corresponding sensor signal. A processing circuit may receive the sensor signal for a time after one or more pacing pulses, and may derive a time-frequency representation of the sensor signal based on the received sensor signal. The processing circuit may use the time-frequency representation of the sensor signal to help identify unwanted stimulation. Once unwanted stimulation is detected, the processing circuit may change the pacing pulses to help reduce or eliminate the unwanted stimulation.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: January 3, 2017
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Holly E. Rockweiler, David C. Olson, Sunipa Saha
  • Patent number: 9517017
    Abstract: An anatomical mapping system includes a plurality of mapping electrodes, a plurality of mechanical sensors, and a mapping processor associated with the plurality of mapping electrodes and mechanical sensors. The mapping electrodes are configured to detect electrical activation signals of intrinsic physiological activity within an anatomical structure. The mechanical sensors are configured to detect mechanical activity associated with the intrinsic physiological activity. The mapping processor is configured to record the detected activation signals and associate one of the plurality of mapping electrodes and mechanical sensors with each recorded activation signal. The mapping processor is further configured to determine activation times of the intrinsic physiological activity based on a correlation of corresponding electrical activation signals and mechanical activity.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: December 13, 2016
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Allan C. Shuros, Pramodsingh H. Thakur, Sunipa Saha, Barun Maskara, Shibaji Shome
  • Publication number: 20160354610
    Abstract: An example of a system includes an implantable medical device (IMD) for implantation in a patient, where the IMD includes a cardiac pace generator, phrenic nerve stimulation (PS) sensor, a memory, and a controller, and where the controller is operably connected to the cardiac pace generator to generate cardiac paces. The controller is configured to provide a trigger for conducting a PS detection procedure and perform the PS detection procedure in response to the trigger. In performing the PS detection procedure the controller is configured to receive a signal from the sensor, detect PS using the signal from the sensor, and record the PS detection in storage within the IMD.
    Type: Application
    Filed: August 16, 2016
    Publication date: December 8, 2016
    Inventors: Holly Rockweiler, Sunipa Saha, Aaron R. McCabe, Krzysztof Z. Siejko
  • Publication number: 20160345853
    Abstract: A method for mapping a cardiac chamber includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the cardiac chamber, the activation signals including a near-field activation signal component and a far-field activation signal component, isolating R-wave events in the activation signals, generating a far-field activation template representative of the far-field activation signal component based on the R-wave events, and filtering the far-field activation template from the activation signals to identify the near-field activation signal components in the activation signals.
    Type: Application
    Filed: August 9, 2016
    Publication date: December 1, 2016
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Barun Maskara, Sunipa Saha, Allan C. Shuros, Shibaji Shome
  • Publication number: 20160346552
    Abstract: An apparatus comprises a stimulus circuit, a switch circuit, and a control circuit. The stimulus circuit is configured to provide electrical pulse stimulation to the plurality of electrodes. The switch circuit is configured to electrically couple different combinations of the electrodes to the stimulus circuit. The control circuit is to configure a stimulation vector that includes a first vector electrode and a plurality of other electrodes electrically coupled together to form a second combined vector electrode. The control circuit includes a capture detection sub-circuit configured to determine individual capture stimulation thresholds between the first vector electrode and each single electrode of the combined vector electrode. The control circuit is configured to determine a capture stimulation threshold of the stimulation vector using the determined individual capture thresholds.
    Type: Application
    Filed: April 27, 2016
    Publication date: December 1, 2016
    Inventors: David J. Ternes, William J. Linder, Sunipa Saha, David L. Perschbacher
  • Publication number: 20160331267
    Abstract: A catheter system includes a mapping catheter including a plurality of mapping electrodes, each mapping electrode configured to sense signals associated with an anatomical structure. The catheter system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive the signals sensed by the plurality of mapping electrodes, characterize the signals sensed by the plurality of mapping electrodes based on a signal parameter of the sensed signals, and generate an output of a quality of contact of the plurality of mapping electrodes with the anatomical structure based on the signal characterization.
    Type: Application
    Filed: July 26, 2016
    Publication date: November 17, 2016
    Inventors: Barun Maskara, Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Shibaji Shome, Sunipa Saha, Allan C. Shuros, Scott A. Meyer
  • Patent number: 9457191
    Abstract: Systems and methods for providing CRT therapy to a patient with an implanted multi-site pacing medical device. In one example, an intrinsic electrical delay associated with each of two or more left ventricle electrodes may be determined. The intrinsic electrical delay associated with each of the two or more left ventricle electrodes may be compared to an electrical delay threshold. If the electrical delay associated with one or fewer left ventricle electrodes is greater than the electrical delay threshold, a single left ventricle electrode may be selected for use during subsequent CRT therapy. If the electrical delay associated with more than one left ventricle electrode is greater than the electrical delay threshold, two or more of the left ventricle electrodes may be selected for use during subsequent CRT therapy.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: October 4, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Keith L. Herrmann, Holly E. Rockweiler, Sunipa Saha, Benjamin J. Nyquist