Patents by Inventor Sunipa Saha

Sunipa Saha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9439578
    Abstract: A method for mapping a cardiac chamber includes sensing activation signals of intrinsic physiological activity with a plurality of electrodes disposed in or near the cardiac chamber, the activation signals including a near-field activation signal component and a far-field activation signal component, isolating R-wave events in the activation signals, generating a far-field activation template representative of the far-field activation signal component based on the R-wave events, and filtering the far-field activation template from the activation signals to identify the near-field activation signal components in the activation signals.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: September 13, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Barun Maskara, Sunipa Saha, Allan C. Shuros, Shibaji Shome
  • Patent number: 9427167
    Abstract: A catheter system includes a mapping catheter including a plurality of mapping electrodes, each mapping electrode configured to sense signals associated with an anatomical structure. The catheter system further includes a processor operatively coupled to the plurality of mapping electrodes and configured to receive the signals sensed by the plurality of mapping electrodes, characterize the signals sensed by the plurality of mapping electrodes based on amplitudes of the sensed signals, and generate an output of a quality of contact of the plurality of mapping electrodes with the anatomical structure based on the signal characterization.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 30, 2016
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Barun Maskara, Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Shibaji Shome, Sunipa Saha, Allan C. Shuros, Scott A. Meyer
  • Patent number: 9421383
    Abstract: An example of a system includes an implantable medical device (IMD) for implantation in a patient, where the IMD includes a cardiac pace generator, phrenic nerve stimulation (PS) sensor, a memory, and a controller, and where the controller is operably connected to the cardiac pace generator to generate cardiac paces. The controller is configured to provide a trigger for conducting a PS detection procedure and perform the PS detection procedure in response to the trigger. In performing the PS detection procedure the controller is configured to receive a signal from the sensor, detect PS using the signal from the sensor, and record the PS detection in storage within the IMD.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: August 23, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Holly Rockweiler, Sunipa Saha, Aaron R. McCabe, Krzysztof Z. Siejko
  • Patent number: 9345890
    Abstract: Embodiments of the invention are related to managing noise in sensed signals in implantable medical devices, amongst other things. In an embodiment the invention includes a method for processing electrical signals obtained from a patient including gathering a first set of electrical signals using an implantable medical device, filtering to provide a second set of electrical signals, the second set including frequencies above a threshold frequency, and estimating the amount of noise present in the first set of electrical signals based on the magnitude of the second set. In an embodiment, the invention includes a medical device configured to gather a first set of electrical signals, filter the first set to provide a second set of electrical signals including frequencies above a threshold frequency, and estimate the amount of noise present in the first set based on the magnitude of the second set. Other embodiments are also included herein.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: May 24, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Eric K. Enrooth, Scot C. Boon
  • Patent number: 9332920
    Abstract: An anatomical mapping system includes a plurality of mapping electrodes each having an electrode location and configured to detect activation signals of intrinsic physiological activity within an anatomical structure. A mapping processor is associated with the plurality of mapping electrodes and is configured to record the detected activation signals and associate one of the plurality of mapping electrodes with each recorded activation signal. The mapping processor is further configured to analyze the recorded activation signals to identify at least one recurring pattern based on a relationship between a timing of the detected activation signals and the electrode locations of the mapping electrode associated with each detected activation signal.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: May 10, 2016
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Barun Maskara, Shantha Arcot-Krishnamurthy, Sunipa Saha, Shibaji Shome
  • Publication number: 20160089050
    Abstract: An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 31, 2016
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Shibaji Shome, Barun Maskara, Sunipa Saha
  • Patent number: 9295843
    Abstract: A system or apparatus can provide electrostimulations via an electrode configuration that can be selected from multiple electrode configurations, the electrostimulations of the type for inducing a desired heart contraction, or a neurostimulation response. The system or apparatus can allow communicating with an external device to receive an input indicating a degree of patient discomfort with an electrostimulation delivered using a first electrode configuration, and can associate information about the degree of discomfort with information about the corresponding first electrode configuration for use by a controller circuit in determining a second electrode configuration for delivering a subsequent electrostimulation.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: March 29, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric K. Enrooth, Sunipa Saha, Krzysztof Z. Siejko, Kenneth N. Hayes, Aaron R. McCabe
  • Patent number: 9272151
    Abstract: An example of a system comprises a cardiac pulse generator configured to generate cardiac paces to pace the heart, a sensor configured to sense a physiological signal for use in detecting pace-induced phrenic nerve stimulation (PS), a storage, and a phrenic nerve stimulation detector. The storage is configured for use to store patient-specific PS features for PS beats with a desirably large signal-to-noise ratio. The phrenic nerve stimulation detector may be configured to detect PS features for the patient by analyzing a PS beat with a desirably large signal-to-noise ratio induced using a pacing pulse with a large energy output and store patient-specific PS features in the storage, and use the patient-specific PS features stored in the memory to detect PS beats when the heart is paced heart using cardiac pacing pulses with a smaller energy output.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: March 1, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Krzysztof Z. Siejko, Sunipa Saha, Aaron R. McCabe, Holly Rockweiler
  • Publication number: 20160008610
    Abstract: An interactive representation of electrostimulation electrodes or vectors can be provided, such as for configuring combinations of electrostimulation electrodes. In an example, electrodes or test parameters can be presented graphically or in a table. A user interface can be configured to receive user-input designating electrode combinations or vectors for test or for use in programming an implantable or ambulatory medical device. The interface can be used to indicate suggested electrode combinations or vectors in response to a first selection of an electrode. Tests can be performed on electrode combinations and vectors, and the results of the tests can be presented to a user using the interactive representation. In an example, test results can be analyzed by a processor and optionally used to program an implantable or ambulatory medical device.
    Type: Application
    Filed: September 18, 2015
    Publication date: January 14, 2016
    Inventors: Sunipa Saha, Kenneth N. Hayes, Keith L. Herrmann, James R. Kalgren, Aaron R. McCabe, Holly Elizabeth Rockweiler, Shibaji Shome, Krzysztof Z. Siejko
  • Patent number: 9211415
    Abstract: A method and a system of phrenic nerve stimulation detection in conjunction with posture sensing is disclosed. In an embodiment, the method may include receiving a trigger for conducting a pace-induced phrenic nerve stimulation (PS) search using the IMD within the patient. On receiving the trigger, the IMD may be used for conducting the PS search. A procedure of conducting the PS search may include measuring a posture of the patient using an implantable posture sensor, searching for PS while the patient is in the measured posture and obtaining a PS result from the PS search for the measured posture. The method may include recording both the PS result and the measured posture in a memory of the IMD.
    Type: Grant
    Filed: February 26, 2014
    Date of Patent: December 15, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Holly Rockweiler, Aaron R. McCabe, Krzysztof Z. Siejko, John D. Hatlestad
  • Patent number: 9186080
    Abstract: A method and system for mapping an anatomical structure includes sensing activation signals of intrinsic physiological activity with a plurality of mapping electrodes disposed in or near the anatomical structure. The activation signals are used to determine a dominant frequency for each electrode from which a wavefront vector for each electrode is determined based on a difference between the dominant frequency at a first electrode location and the dominant frequency at neighboring electrodes. An anatomical map is generated based on the determined wavefront vectors.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: November 17, 2015
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Allan C. Shuros, Pramodsingh H. Thakur, Shibaji Shome, Barun Maskara, Shantha Arcot-Krishnamurthy, Sunipa Saha, Jacob Laughner
  • Publication number: 20150273218
    Abstract: Systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One illustrative method may include delivering electrical stimulation at a first voltage to each vector in a first set of two or more vectors of a multi-vector medical system, determining whether the delivered electrical stimulation at the first voltage resulted in capture for each of the vectors in the first set of two or more vectors, identifying those vectors of the first set of two or more vectors that were determined to result in capture as a second set of vectors, delivering electrical stimulation at a second voltage that is lower than the first voltage to each vector in the second set of vectors, and determining whether the delivered electrical stimulation at the second voltage resulted in capture for each of the vectors in the second set of vectors.
    Type: Application
    Filed: March 26, 2015
    Publication date: October 1, 2015
    Inventors: Holly E. Rockweiler, Sunipa Saha, Keith L. Herrmann, Yinghong Yu, Joel A. Krueger
  • Patent number: 9144391
    Abstract: An anatomical mapping system and method includes mapping electrodes configured to detect activation signals of cardiac activity. A processing system is configured to record the detected activation signals and generate a vector field for each sensed activation signal during each instance of the physiological activity. The processing system determines an onset time and alternative onset time candidates, identifies an initial vector field template based on a degree of similarity between the initial vector field and a vector field template from a bank of templates, then determines an optimized onset time for each activation signal based on a degree similarity between the onset time candidates and initial vector field template.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: September 29, 2015
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Shantha Arcot-Krishnamurthy, Allan C. Shuros, Shibaji Shome, Barun Maskara, Sunipa Saha
  • Patent number: 9138585
    Abstract: An interactive representation of electrostimulation electrodes or vectors can be provided, such as for configuring combinations of electrostimulation electrodes. In an example, electrodes or test parameters can be presented graphically or in a table. A user interface can be configured to receive user-input designating electrode combinations or vectors for test or for use in programming an implantable or ambulatory medical device. The interface can be used to indicate suggested electrode combinations or vectors in response to a first selection of an electrode. Tests can be performed on electrode combinations and vectors, and the results of the tests can be presented to a user using the interactive representation. In an example, test results can be analyzed by a processor and optionally used to program an implantable or ambulatory medical device.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: September 22, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Kenneth N. Hayes, Keith L. Herrmann, James Kalgren, Aaron R. McCabe, Holly Rockweiler, Shibaji Shome, Krzysztof Z. Siejko
  • Patent number: 9131866
    Abstract: Electrical activity propagation along an electrode array within a cardiac chamber is reconstructed. Signals are sampled from the electrode array including signals from a channel of interest. An N-dimensional signal vector is then constructed using signals from N neighboring channels referenced to the channel of interest. A change in the N-dimensional signal vector over time is then determined and compared to a predetermined threshold to establish whether local activation has occurred on the channel of interest.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: September 15, 2015
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh Hirasingh Thakur, Barun Maskara, Allan C. Shuros, Sunipa Saha, Shibaji Shome
  • Patent number: 9126052
    Abstract: Approaches for rate initialization and overdrive pacing used during capture threshold testing are described. Cardiac cycles are detected and the cardiac events of a cardiac chamber that occur during the cardiac cycles are monitored. The number of intrinsic beats in the cardiac events is counted. Initialization for a capture threshold test involves maintaining a pre-test pacing rate for the capture threshold test if the number of intrinsic beats in the cardiac events is less than a threshold. The pacing rate is increased for the capture threshold test if the number of intrinsic beats in the cardiac events is greater than the threshold.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: September 8, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Eric K. Enrooth, Sunipa Saha, Clayton S. Foster, Yanting Dong
  • Patent number: 9089272
    Abstract: A method for mapping an anatomical structure includes sensing activation signals of physiological activity with a plurality of electrodes disposed in or near the anatomical structure, each activation signal having an associated cycle length, estimating an action potential duration and diastolic interval for each cycle length, generating a restitution curve based on the estimated action potential duration and diastolic interval from a preceding cycle length, iteratively optimizing each estimated action potential duration and corresponding diastolic interval to maximize a functional relationship between the estimated action potential duration and estimated diastolic interval from preceding cycle length, and generating an action potential duration restitution curve based on the optimized action potential durations and diastolic intervals.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: July 28, 2015
    Assignee: Boston Scientific Scimed Inc.
    Inventors: Pramodsingh H. Thakur, Barun Maskara, Shantha Arcot-Krishnamurthy, Shibaji Shome, Sunipa Saha, Allan C. Shuros
  • Publication number: 20150165204
    Abstract: Systems and methods for providing CRT therapy to a patient with an implanted multi-site pacing medical device. In one example, an intrinsic electrical delay associated with each of two or more left ventricle electrodes may be determined. The intrinsic electrical delay associated with each of the two or more left ventricle electrodes may be compared to an electrical delay threshold. If the electrical delay associated with one or fewer left ventricle electrodes is greater than the electrical delay threshold, a single left ventricle electrode may be selected for use during subsequent CRT therapy. If the electrical delay associated with more than one left ventricle electrode is greater than the electrical delay threshold, two or more of the left ventricle electrodes may be selected for use during subsequent CRT therapy.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Inventors: Yinghong Yu, Keith L. Herrmann, Holly E. Rockweiler, Sunipa Saha, Benjamin J. Nyquist
  • Publication number: 20150165212
    Abstract: Systems and methods for efficiently determining one or more parameters for vectors of a multi-electrode implantable medical device, and for identifying one or more suitable vectors for sensing cardiac electrical data and/or delivering electrical stimulation therapy based on one or more of the determined parameters. Reducing the time required to determine the one or more parameters for each vector can help reduce procedure time for implanting and/or configuring an implantable medical device, which can reduce costs and/or improved patient comfort.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Inventors: Sunipa Saha, Keith L. Herrmann, Yinghong Yu, David W. Yost, Holly E. Rockweiler
  • Publication number: 20150165205
    Abstract: Some systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patient's heart. One method may include displaying a plurality of vectors on a display screen wherein each vector represents a different combination of three or more electro-stimulation electrodes, determining an electrical impedance for each of the plurality of vectors, displaying on the display screen the electrical impedance for each of the plurality of vectors, receiving a selection of a set of the plurality of vectors, determining, for each of the vectors in the set of vectors, a capture threshold, displaying on the display screen the capture threshold for each of the vectors in the set of vectors, receiving a selection of a vector from the set of vectors for delivery of electrical stimulation to the patient's heart, and programming the electro-stimulation device electrical stimulation to the patient's heart via the selected vector.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Inventors: Holly E. Rockweiler, Sunipa Saha, Keith L. Herrmann, Yinghong Yu, Joel A. Krueger