Patents by Inventor Sven Albers

Sven Albers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9142475
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with magnetic contacts, as well as corresponding fabrication methods and systems incorporating such magnetic contacts. A first IC substrate may have a first magnet coupled with a first electrical routing feature. A second IC substrate may have a second magnet coupled with a second electrical routing feature. The magnets may be embedded in the IC substrates and/or electrical routing features. The magnets may generate a magnetic field that extends across a gap between the first and second electrical routing features. Electrically conductive magnetic particles may be applied to one or both of the IC substrates to form a magnetic interconnect structure that extends across the gap. In some embodiments, magnetic contacts may be demagnetized by heating the magnets to a corresponding partial demagnetization temperature (PDT) or Curie temperature. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: September 22, 2015
    Assignee: Intel Corporation
    Inventors: Michael P. Skinner, Teodora Ossiander, Sven Albers, Georg Seidemann
  • Publication number: 20150255412
    Abstract: Embodiments of the present disclosure describe integrated circuit (IC) package assemblies and methods of fabricating IC package assemblies. These embodiments include dies embedded in embedding substrates to provide larger pitch interconnects to facilitate coupling to substrates or circuit boards through flip chip techniques. The embedding substrates may contain conductive pathways for coupling die contacts to larger pitch contacts located on the embedding substrate. By embedding the dies in the embedding substrates, dies having smaller pitch contacts can be used in package assemblies with larger pitch components without the need for silicon interposers and without having to utilize more stringent pick and place operations. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 6, 2014
    Publication date: September 10, 2015
    Inventors: Thorsten Meyer, Sven Albers
  • Publication number: 20150243572
    Abstract: Embodiments of the present disclosure are directed towards an integrated circuit (IC) package including a die having a first side and a second side disposed opposite to the first side. The IC package may further include an encapsulation material encapsulating at least a portion of the die and having a first surface that is adjacent to the first side of the die and a second surface disposed opposite to the first surface. In embodiments, the second surface may be shaped such that one or more cross-section areas of the IC package are thinner than one or more other cross-section areas of the IC package. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: February 25, 2014
    Publication date: August 27, 2015
    Inventors: Sven Albers, Sonja Koller, Thorsten Meyer, Georg Seidemann, Christian Geissler, Andreas Wolter
  • Publication number: 20150235920
    Abstract: Embodiments of flow diversion devices (FDDs) are disclosed herein. An FDD may include a body formed of a body material and a plurality of thermally deformable fins arranged along the body. Individual fins of the plurality of fins may include first and second materials having different coefficients of thermal expansion (CTEs). Other embodiments may be disclosed and/or claimed.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 20, 2015
    Inventors: Michael P. Skinner, Sven Albers, Harald Gossner, Peter Baumgartner, Hans-Joachim Barth
  • Publication number: 20150214188
    Abstract: Embodiments of a flexibly-wrapped integrated circuit die device and a method for mounting a flexibly-wrapped integrated circuit die to a substrate are disclosed. In some embodiments, the flexibly-wrapped integrated circuit die device includes a substrate and a flexible integrated circuit die coupled to the substrate in a substantially vertical orientation with reference to a surface of the substrate.
    Type: Application
    Filed: December 19, 2013
    Publication date: July 30, 2015
    Inventors: Sven Albers, Michael Skinner, Hnas-Joachim Barth, Peter Baumgartner, Harald Gossner
  • Publication number: 20150084202
    Abstract: An apparatus comprises a first integrated circuit (IC) die that includes a top layer, a bottom surface, a sidewall surface extending from a top surface of the top layer to the bottom surface, and at least one multi-surface contact pad, a second IC die including a top layer, a bottom surface, a sidewall surface extending from a top surface of the top layer to the bottom surface, and at least one multi-surface contact pad, wherein the second IC die is arranged adjacent to the first IC die, and includes an electrically conductive bond in contact with at least one of the top surface or the side surface of the multi-surface contact pad of the first IC die and the top surface of the multi-surface contact pad of the second IC die.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Inventors: Georg Seidemann, Sven Albers, Teodora Ossiander, Michael Skinner, Hans-Joachim Barth, Harald Gossner, Reinhard Mahnkoph, Christian Mueller, Wolfgang Molzer
  • Publication number: 20150084165
    Abstract: Embodiments of the present description include stacked microelectronic dice embedded in a microelectronic substrate and methods of fabricating the same. In one embodiment, at least one first microelectronic die is attached to a second microelectronic die, wherein an underfill material is provided between the second microelectronic die and the at least one first microelectronic die. The microelectronic substrate is then formed by laminating the first microelectronic die and the second microelectronic die in a substrate material.
    Type: Application
    Filed: September 24, 2013
    Publication date: March 26, 2015
    Inventors: Reinhard Mahnkopf, Wolfgang Molzer, Bernd Memmler, Edmund Goetz, Hans-Joachim Barth, Sven Albers, Thorsten Meyer
  • Publication number: 20150048520
    Abstract: Embodiments of the present disclosure are directed to integrated circuit (IC) package assemblies with magnetic contacts, as well as corresponding fabrication methods and systems incorporating such magnetic contacts. A first IC substrate may have a first magnet coupled with a first electrical routing feature. A second IC substrate may have a second magnet coupled with a second electrical routing feature. The magnets may be embedded in the IC substrates and/or electrical routing features. The magnets may generate a magnetic field that extends across a gap between the first and second electrical routing features. Electrically conductive magnetic particles may be applied to one or both of the IC substrates to form a magnetic interconnect structure that extends across the gap. In some embodiments, magnetic contacts may be demagnetized by heating the magnets to a corresponding partial demagnetization temperature (PDT) or Curie temperature. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: August 13, 2013
    Publication date: February 19, 2015
    Inventors: Michael P. Skinner, Teodora Ossiander, Sven Albers, Georg Seidemann
  • Publication number: 20150028478
    Abstract: A semiconductor device includes: a chip having at least one electrically conductive contact at a first side of the chip; an extension layer extending laterally from one or more sides of the chip; a redistribution layer on a surface of the extension layer and the first side, and coupled to the contact; an interposer having at least one electrically conductive contact at a first surface of the interposer and coupled to the redistribution layer, and at least one electrically conductive contact at a second surface of the interposer opposite to the first surface; a molding material at least partially enclosing the chip and the redistribution layer, and in contact with the interposer. Another semiconductor device includes: an interposer; a redistribution layer over the interposer; a circuit having first and second circuit portions, wherein the redistribution layer includes the first circuit portion, and the interposer includes the second circuit portion.
    Type: Application
    Filed: January 10, 2013
    Publication date: January 29, 2015
    Inventors: Thorsten Meyer, Gerald Ofner, Bernd Waidhas, Hans-Joachim Barth, Sven Albers, Reinhard Golly, Philipp Riess, Bernd Ebersberger
  • Patent number: 8907480
    Abstract: A chip arrangement may include: a first chip including a first contact, a second contact, and a redistribution structure electrically coupling the first contact to the second contact; a second chip including a contact; and a plurality of interconnects electrically coupled to the second contact of the first chip, wherein at least one interconnect of the plurality of interconnects electrically couples the second contact of the first chip to the contact of the second chip.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: December 9, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Hans-Joachim Barth, Reinhard Mahnkopf, Sven Albers, Andreas Augustin, Christian Mueller
  • Patent number: 8878360
    Abstract: A stacked semiconductor device and method of manufacturing a stacked semiconductor device are described. The semiconductor device may include a reconstituted base layer having a plurality of embedded semiconductor chips. A first redistribution layer may contact the electrically conductive contacts of the embedded chips and extend beyond the boundary of one or more of the embedded chips, forming a fan-out area. Another chip may be stacked above the chips embedded in the base layer and be electrically connected to the embedded chips by a second redistribution layer. Additional layers of chips may be included in the semiconductor device.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: November 4, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Gerald Ofner, Sven Albers
  • Publication number: 20140264832
    Abstract: A chip arrangement may include: a first chip including a first contact, a second contact, and a redistribution structure electrically coupling the first contact to the second contact; a second chip including a contact; and a plurality of interconnects electrically coupled to the second contact of the first chip, wherein at least one interconnect of the plurality of interconnects electrically couples the second contact of the first chip to the contact of the second chip.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Inventors: Thorsten Meyer, Hans-Joachim Barth, Reinhard Mahnkopf, Sven Albers, Andreas Augustin, Christian Mueller
  • Publication number: 20140264914
    Abstract: An electronic package includes an interposer, a die attached to a first side of the interposer, an embedded electronic package attached to a second side of the interposer, an encapsulation compound, a set of vias providing electrical paths from a first side of the electronic package to the interposer through the encapsulation compound, and a redistribution layer electrically redistributing the set of vias to form a set of interconnect-pads. Either the die or the embedded electronic package, or both, are electrically connected to the interposer.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventors: Thorsten Meyer, Sven Albers, Andreas Wolter
  • Publication number: 20140252632
    Abstract: A semiconductor device includes: a semiconductor chip; an extension layer extending laterally from a boundary of the semiconductor chip; a redistribution layer disposed over at least one side of the extension layer and the semiconductor chip, wherein the redistribution layer electrically couples at least one contact of the semiconductor chip to at least one contact of an interface, wherein at least a part of the interface extends laterally beyond the boundary of the semiconductor chip.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Inventors: Hans-Joachim Barth, Reinhard Mahnkopf, Thorsten Meyer, Sven Albers, Andreas Augustin, Christian Mueller
  • Patent number: 8786105
    Abstract: A semiconductor device is described having at least one semiconductor chip, the chip having an active area on a top side thereof, the active area formed at least in part of low-k material, said low-k material defining a low-k subarea of said active area; an embedding material, in which said at least one semiconductor chip is embedded, at least part of the embedding material forming a coplanar area with said active area; at least one contact area within the low-k subarea; a redistribution layer on the coplanar area, the redistribution layer connected to said contact areas; at least one first-level interconnect, located outside said low-k subarea, the first-level interconnect electrically connected to at least one of said contact areas via the redistribution layer.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: July 22, 2014
    Assignee: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Sven Albers, Christian Geissler, Andreas Wolter, Markus Brunnbauer, David O'Sullivan, Frank Zudock, Jan Proschwitz
  • Publication number: 20140197530
    Abstract: A semiconductor device is described having at least one semiconductor chip, the chip having an active area on a top side thereof, the active area formed at least in part of low-k material, said low-k material defining a low-k subarea of said active area; an embedding material, in which said at least one semiconductor chip is embedded, at least part of the embedding material forming a coplanar area with said active area; at least one contact area within the low-k subarea; a redistribution layer on the coplanar area, the redistribution layer connected to said contact areas; at least one first-level interconnect, located outside said low-k subarea, the first-level interconnect electrically connected to at least one of said contact areas via the redistribution layer.
    Type: Application
    Filed: January 11, 2013
    Publication date: July 17, 2014
    Applicant: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Sven Albers, Christian Geissler, Andreas Wolter, Markus Brunnbauer, David O'Sullivan, Frank Zudock, Jan Proschwitz
  • Publication number: 20140015131
    Abstract: A stacked semiconductor device and method of manufacturing a stacked semiconductor device are described. The semiconductor device may include a reconstituted base layer having a plurality of embedded semiconductor chips. A first redistribution layer may contact the electrically conductive contacts of the embedded chips and extend beyond the boundary of one or more of the embedded chips, forming a fan-out area. Another chip may be stacked above the chips embedded in the base layer and be electrically connected to the embedded chips by a second redistribution layer. Additional layers of chips may be included in the semiconductor device.
    Type: Application
    Filed: July 13, 2012
    Publication date: January 16, 2014
    Applicant: Intel Mobile Communications GmbH
    Inventors: Thorsten Meyer, Gerald Ofner, Sven Albers
  • Patent number: 8323051
    Abstract: A device (1) for implementing a dry electrical connection of a motor vehicle lock (27), comprising a fastening part (2) for a lock housing (3), wherein an electrical connection to the lock housing (3) can be implemented through an opening (4) of the fastening part (2) from a first side (5) of the fastening part (2), wherein the lock housing (3) has an external plug (7) that is positioned at a distance to the fastening part (2) and at the circumference (8) of which a flexible collar (9) is fastened, extending to the first side (5) of the fastening part (2) and forming a seal (11) with a second distance (10) to the opening (4) of the fastening part (2).
    Type: Grant
    Filed: March 14, 2009
    Date of Patent: December 4, 2012
    Assignee: Kiekert AG
    Inventor: Sven Albers
  • Patent number: 8154049
    Abstract: An ESD protection apparatus includes a substrate, a transistor structure arranged in the substrate, and a diode structure arranged in the substrate, a high-resistance electrical connection being provided between the transistor structure and the diode structure in the substrate.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: April 10, 2012
    Assignee: Infineon Technologies AG
    Inventors: Sven Albers, Klaus Diefenbeck, Bernd Eisener, Gernot Langguth, Christian Lehrer, Karl-Heinz Malek, Eberhard Rohrer
  • Patent number: 7888703
    Abstract: An ESD protection apparatus includes a substrate, a transistor structure arranged in the substrate, and a diode structure arranged in the substrate, a high-resistance electrical connection being provided between the transistor structure and the diode structure in the substrate.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: February 15, 2011
    Assignee: Infineon Technologies AG
    Inventors: Sven Albers, Klaus Diefenbeck, Bernd Eisener, Gernot Langguth, Christian Lehrer, Karl-Heinz Malek, Eberhard Rohrer