Patents by Inventor Sylvain Muckenhirn

Sylvain Muckenhirn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10324046
    Abstract: Methods and systems for monitoring a non-defect related characteristic of a patterned wafer are provided. One computer-implemented method includes generating output responsive to light from a patterned wafer using an inspection system. The method also includes determining differences between a value of a non-defect related characteristic of the patterned wafer and a known value of the non-defect related characteristic based on differences between one or more attributes of the output and one or more attributes of other output of the inspection system for a different patterned wafer having the known value of the non-defect related characteristic.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: June 18, 2019
    Assignee: KLA-Tencor Corp.
    Inventors: Tao-Yi Fu, Steve Lange, Lisheng Gao, Xuguang Jiang, Ping Gu, Sylvain Muckenhirn
  • Patent number: 9735022
    Abstract: An array of nanowires and method thereof. The array of nanowires includes a plurality of nanowires. The plurality of nanowires includes a plurality of first ends and a plurality of second ends respectively. For each of the plurality of nanowires, a corresponding first end selected from the plurality of first ends and a corresponding second end selected from the plurality of second ends are separated by a distance of at least 200 ?m. All nanowires of the plurality of nanowires are substantially parallel to each other.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: August 15, 2017
    Assignee: ALPHABET ENERGY, INC.
    Inventors: Mingqiang Yi, Matthew L. Scullin, Gabriel Matus, Dawn L. Hilken, Chii Guang Lee, Sylvain Muckenhirn
  • Patent number: 9514931
    Abstract: A matrix with at least one embedded array of nanowires and method thereof. The matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first end and a second end. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. Each of the one or more fill materials is associated with a thermal conductivity less than 50 Watts per meter per degree Kelvin. And, the matrix is associated with at least a sublimation temperature and a melting temperature, the sublimation temperature and the melting temperature each being above 350° C.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: December 6, 2016
    Assignee: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Gabriel A. Matus, Matthew L. Scullin, Chii Guang Lee, Sylvain Muckenhirn
  • Publication number: 20160322554
    Abstract: A thermoelectric device and methods thereof. The thermoelectric device includes nanowires, a contact layer, and a shunt. Each of the nanowires includes a first end and a second end. The contact layer electrically couples the nanowires through at least the first end of each of the nanowires. The shunt is electrically coupled to the contact layer. All of the nanowires are substantially parallel to each other. A first contact resistivity between the first end and the contact layer ranges from 10?13 ?-m2 to 10?7 ?-m2. A first work function between the first end and the contact layer is less than 0.8 electron volts. The contact layer is associated with a first thermal resistance ranging from 10?2 K/W to 1010 K/W.
    Type: Application
    Filed: April 1, 2016
    Publication date: November 3, 2016
    Inventors: Matthew L. Scullin, Madhav A. Karri, Adam Lorimer, Sylvain Muckenhirn, Gabriel A. Matus, Justin Tynes Kardel, Barbara Wacker
  • Patent number: 9240328
    Abstract: An array of nanowires and method thereof. The array of nanowires includes a plurality of nanowires. The plurality of nanowires includes a plurality of first ends and a plurality of second ends respectively. For each of the plurality of nanowires, a corresponding first end selected from the plurality of first ends and a corresponding second end selected from the plurality of second ends are separated by a distance of at least 200 ?m. All nanowires of the plurality of nanowires are substantially parallel to each other.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: January 19, 2016
    Assignee: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Matthew L. Scullin, Gabriel Alejandro Matus, Dawn L. Hilken, Chii Guang Lee, Sylvain Muckenhirn
  • Publication number: 20150093904
    Abstract: An array of nanowires and method thereof. The array of nanowires includes a plurality of nanowires. The plurality of nanowires includes a plurality of first ends and a plurality of second ends respectively. For each of the plurality of nanowires, a corresponding first end selected from the plurality of first ends and a corresponding second end selected from the plurality of second ends are separated by a distance of at least 200 ?m. All nanowires of the plurality of nanowires are substantially parallel to each other.
    Type: Application
    Filed: December 11, 2014
    Publication date: April 2, 2015
    Inventors: Mingqiang YI, Matthew L. SCULLIN, Gabriel MATUS, Dawn L. HILKEN, Chii Guang LEE, Sylvain MUCKENHIRN
  • Publication number: 20140193982
    Abstract: A matrix with at least one embedded array of nanowires and method thereof. The matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first end and a second end. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. Each of the one or more fill materials is associated with a thermal conductivity less than 50 Watts per meter per degree Kelvin. And, the matrix is associated with at least a sublimation temperature and a melting temperature, the sublimation temperature and the melting temperature each being above 350° C.
    Type: Application
    Filed: March 10, 2014
    Publication date: July 10, 2014
    Applicant: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Gabriel A. Matus, Matthew L. Scullin, Chii Guang Lee, Sylvain Muckenhirn
  • Publication number: 20140182644
    Abstract: Thermoelectric device with a multi-leg package and method thereof. The thermoelectric device includes a first ceramic base structure including a first surface and a second surface, and a first plurality of pads including one or more first materials thermally and electrically conductive. The first plurality of pads are attached to the first surface. Additionally, the thermoelectric device includes a second plurality of pads including the one or more first materials. The second plurality of pads are attached to the second surface and arranged in a mirror image with the first plurality of pads. Moreover, the thermoelectric device includes a plurality of thermoelectric legs attached to the first plurality of pads respectively. Each pad of the first plurality of pads is attached to at least two first thermoelectric legs of the plurality of thermoelectric legs.
    Type: Application
    Filed: October 14, 2013
    Publication date: July 3, 2014
    Applicant: Alphabet Energy, Inc.
    Inventors: Mario Aguirre, Adam Lorimer, Sasi Bhushan Beera, Sravan Kumar Sura, Matthew L. Scullin, Sylvain Muckenhirn, Douglas Crane
  • Patent number: 8736011
    Abstract: A matrix with at least one embedded array of nanowires and method thereof. The matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first end and a second end. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. Each of the one or more fill materials is associated with a thermal conductivity less than 50 Watts per meter per degree Kelvin. And, the matrix is associated with at least a sublimation temperature and a melting temperature, the sublimation temperature and the melting temperature each being above 350° C.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: May 27, 2014
    Assignee: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Gabriel A. Matus, Matthew L. Scullin, Chii Guang Lee, Sylvain Muckenhirn
  • Publication number: 20130175654
    Abstract: Array of nanoholes and method for making the same. The array of nanoholes includes a plurality of nanoholes. Each of the plurality of nanoholes corresponds to a first end and a second end, and the first end and the second end are separated by a first distance of at least 100 ?m. Each of the plurality of nanoholes corresponds to a cross-sectional area associated with a distance across, and the distance across ranges from 5 nm to 500 nm. Each of the plurality of nanoholes is separated from at least another nanohole selected from the plurality of nanoholes by a semiconductor material associated with a sidewall thickness, and the sidewall thickness ranges from 5 nm to 500 nm.
    Type: Application
    Filed: February 6, 2013
    Publication date: July 11, 2013
    Inventors: Sylvain Muckenhirn, Chii Guang Lee, Matthew L. Scullin
  • Publication number: 20120319082
    Abstract: A matrix with at least one embedded array of nanowires and method thereof. The matrix includes nanowires and one or more fill materials located between the nanowires. Each of the nanowires including a first end and a second end. The nanowires are substantially parallel to each other and are fixed in position relative to each other by the one or more fill materials. Each of the one or more fill materials is associated with a thermal conductivity less than 50 Watts per meter per degree Kelvin. And, the matrix is associated with at least a sublimation temperature and a melting temperature, the sublimation temperature and the melting temperature each being above 350° C.
    Type: Application
    Filed: December 1, 2011
    Publication date: December 20, 2012
    Applicant: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Gabriel A. Matus, Matthew L. Scullin, Chii Guang Lee, Sylvain Muckenhirn
  • Publication number: 20120295074
    Abstract: An array of nanowires and method thereof. The array of nanowires includes a plurality of nanowires. The plurality of nanowires includes a plurality of first ends and a plurality of second ends respectively. For each of the plurality of nanowires, a corresponding first end selected from the plurality of first ends and a corresponding second end selected from the plurality of second ends are separated by a distance of at least 200 ?m. All nanowires of the plurality of nanowires are substantially parallel to each other.
    Type: Application
    Filed: November 17, 2011
    Publication date: November 22, 2012
    Applicant: Alphabet Energy, Inc.
    Inventors: Mingqiang Yi, Matthew L. Scullin, Gabriel Alejandro Matus, Dawn L. Hilken, Chii Guang Lee, Sylvain Muckenhirn
  • Publication number: 20120247527
    Abstract: A thermoelectric device and methods thereof. The thermoelectric device includes nanowires, a contact layer, and a shunt. Each of the nanowires includes a first end and a second end. The contact layer electrically couples the nanowires through at least the first end of each of the nanowires. The shunt is electrically coupled to the contact layer. All of the nanowires are substantially parallel to each other. A first contact resistivity between the first end and the contact layer ranges from 10?13 ?-m2 to 10?7 ?-m2. A first work function between the first end and the contact layer is less than 0.8 electron volts. The contact layer is associated with a first thermal resistance ranging from 10?2 K/W to 1010 K/W.
    Type: Application
    Filed: February 1, 2012
    Publication date: October 4, 2012
    Applicant: Alphabet Energy, Inc.
    Inventors: Matthew L. Scullin, Madhav A. Karri, Adam Lorimer, Sylvain Muckenhirn, Gabriel A. Matus, Justin Tynes Kardel, Barbara Wacker
  • Patent number: 7623228
    Abstract: A surface and edge inspection system and the method for inspecting a substrate are disclosed. An edge inspection tool performs edge inspection of one or more substrates while a surface inspection tool performs surface inspection of a different substrate. A recipe for the surface inspection may be modified based on the results of the edge inspection.
    Type: Grant
    Filed: May 21, 2007
    Date of Patent: November 24, 2009
    Assignee: KLA-Tencor Technologies Corporation
    Inventor: Sylvain Muckenhirn
  • Publication number: 20060185424
    Abstract: A surface analyzing system including in one system both an integrating optical instrument, such as a scatterometer, and individual-feature-measuring instrument, such as a scanning probe microscope or a beam imaging system, for example, a scanning electron microscope. In a preferred embodiment, the two instruments are capable of characterizing a wafer held on a common stage. The stage may be movable a predetermined displacement to allow the same area of the wafer to be characterized by a scatterometer at one position of the stage and to be characterized by the scanning probe microscope or beam imaging system. The scatterometer can rapidly measure wafers to indicate whether a problem exists, and the scanning probe microscope can perform detailed measurements on wafers flagged by the scatterometer.
    Type: Application
    Filed: January 17, 2006
    Publication date: August 24, 2006
    Applicant: FEI Company
    Inventor: Sylvain Muckenhirn