Patents by Inventor Sz-Chin Steven LIN

Sz-Chin Steven LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230330671
    Abstract: A method includes engaging a well of a cartridge with a flow sensor of an instrument. The cartridge includes: a rotary valve including a rotatable port and a center port; the well in fluid communication with a channel, the channel including a channel port that the rotatable port is to align to in order to receive fluid from the well; and a flowcell including an inlet gasket in fluid communication with the center port. A source of pressurized air is connected to the flow sensor in order to establish a mass flow of air through a flow path. The flow path extends through one of the flow sensor, the channel, the rotary valve, and the flowcell. The mass flow of air through the flow path is measured with the flow sensor. It is determined if there is one of an air leak and an air blockage within the flow path.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 19, 2023
    Inventors: Sz-chin Steven Lin, Richard Lemoine, Rajagopal Panchapakesan, Wesley A. Cox-Muranami, Darren Segale
  • Patent number: 11724258
    Abstract: A method includes engaging a well of a cartridge with a flow sensor of an instrument. The cartridge includes: a rotary valve including a rotatable port and a center port; the well in fluid communication with a channel, the channel including a channel port that the rotatable port is to align to in order to receive fluid from the well; and a flowcell including an inlet gasket in fluid communication with the center port. A source of pressurized air is connected to the flow sensor in order to establish a mass flow of air through a flow path. The flow path extends through one of the flow sensor, the channel, the rotary valve, and the flowcell. The mass flow of air through the flow path is measured with the flow sensor. It is determined if there is one of an air leak and an air blockage within the flow path.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: August 15, 2023
    Assignee: ILLUMINA, INC.
    Inventors: Sz-Chin Steven Lin, Richard Lemoine, Rajagopal Panchapakesan, Wesley A. Cox-Muranami, Darren Segale
  • Publication number: 20220387998
    Abstract: A cartridge assembly comprises a housing having an illumination chamber and a well plate. The well plate is maintained within the housing and has liquid wells to receive desired amounts of liquids. The well plate includes a fluidics analysis station aligned with the illumination chamber, and an interface window and interface ports located at the fluidics analysis station. The well plate includes a valve station and pump station. A piercer unit is provided in the housing and positioned proximate to the wells. The piercer unit includes a piercer element and is to be moved to a piercing position where the piercer element pierces a cover for the corresponding well. A pump assembly on the well plate at the pump station manages fluid flow through the channels between the pump station and the fluidics analysis station. The housing includes a flow cell chamber to receive a removable flow cell cartridge.
    Type: Application
    Filed: August 15, 2022
    Publication date: December 8, 2022
    Inventors: Richard L. Lemoine, James Osmus, Sz-Chin Steven Lin, Beng Keong Ang
  • Publication number: 20220371005
    Abstract: A system includes a fluidic device, a flow control valve, a first reagent fluid reservoir fluidly connectable to the fluidic device by the flow control valve, a first fluid buffer reservoir fluidly connectable to the fluidic device by the flow control valve, and a common fluid buffer source fluidly connectable to the fluidic device by the flow control valve. The flow control valve permits flow comprising: (i) flow from the first reagent fluid reservoir to the fluidic device, (ii) flow from the common fluid buffer source to the fluidic device, (iii) flow from the fluidic device to the first fluid buffer reservoir, (iv) flow from the first reagent fluid reservoir to the fluidic device, and (v) flow from the first fluid buffer reservoir to the fluidic device.
    Type: Application
    Filed: August 3, 2022
    Publication date: November 24, 2022
    Applicant: Illumina, Inc.
    Inventors: Wesley A. COX-MURANAMI, Kay KLAUSING, Bradley Kent DREWS, Nicholas WATSON, Jennifer Olivia FOLEY, Murphy HITCHCOCK, Paul SANGIORGIO, Sz-Chin Steven LIN
  • Patent number: 11458469
    Abstract: A cartridge assembly comprises a housing having an illumination chamber and a well plate. The well plate is maintained within the housing and has liquid wells to receive desired amounts of liquids. The well plate includes a fluidics analysis station aligned with the illumination chamber, and an interface window and interface ports located at the fluidics analysis station. The well plate includes a valve station and pump station. A piercer unit is provided in the housing and positioned proximate to the wells. The piercer unit includes a piercer element and is to be moved to a piercing position where the piercer element pierces a cover for the corresponding well. A pump assembly on the well plate at the pump station manages fluid flow through the channels between the pump station and the fluidics analysis station. The housing includes a flow cell chamber to receive a removable flow cell cartridge.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: October 4, 2022
    Assignees: ILLUMINA, INC., ILLUMINA SINGAPORE PTE. LTD.
    Inventors: Richard L. Lemoine, James Osmus, Sz-Chin Steven Lin, Beng Keong Ang
  • Publication number: 20220280940
    Abstract: A method includes engaging a well of a cartridge with a flow sensor of an instrument. The cartridge includes: a rotary valve including a rotatable port and a center port; the well in fluid communication with a channel, the channel including a channel port that the rotatable port is to align to in order to receive fluid from the well; and a flowcell including an inlet gasket in fluid communication with the center port. A source of pressurized air is connected to the flow sensor in order to establish a mass flow of air through a flow path. The flow path extends through one of the flow sensor, the channel, the rotary valve, and the flowcell. The mass flow of air through the flow path is measured with the flow sensor. It is determined if there is one of an air leak and an air blockage within the flow path.
    Type: Application
    Filed: May 23, 2022
    Publication date: September 8, 2022
    Inventors: Sz-Chin Steven Lin, Richard Lemoine, Rajagopal Panchapakesan, Wesley A. Cox-Muranami, Darren Segale
  • Patent number: 11426723
    Abstract: A system includes a fluidic device, a flow control valve, a first reagent fluid reservoir fluidly connectable to the fluidic device by the flow control valve, a first fluid buffer reservoir fluidly connectable to the fluidic device by the flow control valve, and a common fluid buffer source fluidly connectable to the fluidic device by the flow control valve. The flow control valve permits flow comprising: (i) flow from the first reagent fluid reservoir to the fluidic device, (ii) flow from the common fluid buffer source to the fluidic device, (iii) flow from the fluidic device to the first fluid buffer reservoir, (iv) flow from the first reagent fluid reservoir to the fluidic device, and (v) flow from the first fluid buffer reservoir to the fluidic device.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: August 30, 2022
    Assignee: Illumina, Inc.
    Inventors: Wesley A. Cox-Muranami, Kay Klausing, Bradley Kent Drews, Nicholas Watson, Jennifer Olivia Foley, Murphy Hitchcock, Paul Sangiorgio, Sz-Chin Steven Lin
  • Patent number: 11351541
    Abstract: A method includes engaging a well of a cartridge with a flow sensor of an instrument. The cartridge includes: a rotary valve including a rotatable port and a center port; the well in fluid communication with a channel, the channel including a channel port that the rotatable port is to align to in order to receive fluid from the well; and a flowcell including an inlet gasket in fluid communication with the center port. A source of pressurized air is connected to the flow sensor in order to establish a mass flow of air through a flow path. The flow path extends through one of the flow sensor, the channel, the rotary valve, and the flowcell. The mass flow of air through the flow path is measured with the flow sensor. It is determined if there is one of an air leak and an air blockage within the flow path.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: June 7, 2022
    Assignee: Illumina, Inc.
    Inventors: Sz-Chin Steven Lin, Richard Lemoine, Rajagopal Panchapakesan, Wesley A. Cox-Muranami, Darren Segale
  • Publication number: 20210299661
    Abstract: A method includes engaging a well of a cartridge with a flow sensor of an instrument. The cartridge includes: a rotary valve including a rotatable port and a center port; the well in fluid communication with a channel, the channel including a channel port that the rotatable port is to align to in order to receive fluid from the well; and a flowcell including an inlet gasket in fluid communication with the center port. A source of pressurized air is connected to the flow sensor in order to establish a mass flow of air through a flow path. The flow path extends through one of the flow sensor, the channel, the rotary valve, and the flowcell. The mass flow of air through the flow path is measured with the flow sensor. It is determined if there is one of an air leak and an air blockage within the flow path.
    Type: Application
    Filed: April 2, 2018
    Publication date: September 30, 2021
    Inventors: Sz-Chin Steven LIN, Richard LEMOINE, Rajagopal PANCHAPAKESAN, Wesley A. COX-MURANAMI, Darren SEGALE
  • Publication number: 20200108386
    Abstract: A method for testing a microfluidic device includes interfacing a microfluidic device to a fluidic parameter testing system. The microfluidic device has an internal rotary valve and internal fluidic channels. Each channel has a port with a predetermined port position that the rotary valve is to align to in order to select any one of a plurality of reagents which flow through the channels. The rotary valve is rotated via the testing system to a plurality of rotary valve position of the rotary valve. A fluidic parameter of the microfluidic device is measured at each rotary valve position. The fluidic parameter is mapped relative to the rotary valve positions. It is determined from the mapping if the rotary valve aligns with each of the predetermined port positions for a flow of the reagents through the channels.
    Type: Application
    Filed: April 2, 2018
    Publication date: April 9, 2020
    Inventors: Wesley A. COX-MURANAMI, Sz-Chin Steven LIN, Rajagopal PANCHAPAKESAN, Darren SEGALE, Richard LEMOINE
  • Publication number: 20200108382
    Abstract: A system includes a fluidic device, a flow control valve, a first reagent fluid reservoir fluidly connectable to the fluidic device by the flow control valve, a first fluid buffer reservoir fluidly connectable to the fluidic device by the flow control valve, and a common fluid buffer source fluidly connectable to the fluidic device by the flow control valve. The flow control valve permits flow comprising: (i) flow from the first reagent fluid reservoir to the fluidic device, (ii) flow from the common fluid buffer source to the fluidic device, (iii) flow from the fluidic device to the first fluid buffer reservoir, (iv) flow from the first reagent fluid reservoir to the fluidic device, and (v) flow from the first fluid buffer reservoir to the fluidic device.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 9, 2020
    Applicant: Illumina, Inc.
    Inventors: Wesley A. Cox-Muranami, Kay Klausing, Bradley Kent Drews, Nicholas Watson, Jennifer Olivia Foley, Murphy Hitchcock, Paul Sangiorgio, Sz-Chin Steven Lin
  • Patent number: 10576471
    Abstract: Disclosed herein are devices, systems and methods for conducting a reaction using electrowetting in a vertical or substantially vertical position. Some embodiments disclosed herein provide fluidic cartridges for use in a substantially vertical position comprising: (a) a front substrate; (b) a back substrate; (c) a droplet operations gap formed between the front substrate and the back substrate; and (d) a plurality of electrodes on the front substrate or the back substrate, wherein the plurality of electrodes are configured to transport a droplet along a substantially vertical plane defined by the front substrate and the back substrate.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: March 3, 2020
    Assignee: ILLUMINA, INC.
    Inventors: James Osmus, Richard L. Lemoine, Jian Gong, Sz-Chin Steven Lin
  • Publication number: 20190299210
    Abstract: A cartridge assembly comprises a housing having an illumination chamber and a well plate. The well plate is maintained within the housing and has liquid wells to receive desired amounts of liquids. The well plate includes a fluidics analysis station aligned with the illumination chamber, and an interface window and interface ports located at the fluidics analysis station. The well plate includes a valve station and pump station. A piercer unit is provided in the housing and positioned proximate to the wells. The piercer unit includes a piercer element and is to be moved to a piercing position where the piercer element pierces a cover for the corresponding well. A pump assembly on the well plate at the pump station manages fluid flow through the channels between the pump station and the fluidics analysis station. The housing includes a flow cell chamber to receive a removable flow cell cartridge.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Richard L. Lemoine, James Osmus, Sz-Chin Steven Lin, Beng Keong Ang
  • Patent number: 10343160
    Abstract: A cartridge assembly that comprises a housing, including a flow cell chamber to receive a flow cell, and a well plate having liquid wells to receive desired amounts of liquids. The well plate includes a valve station, a pump station and a fluidics analysis station, and channels associated therewith. A pump assembly to manage fluid flow through the channels between the pump station and the fluidics analysis station. A rotary valve assembly that includes a rotor shaft and rotor valve positioned to rotate about a rotational axis and to selectively couple the wells to the pump station. The rotor shaft includes a dual spline configuration at the distal end thereof. The dual spline configuration has first and second sets of splines. The first set of splines forms a drive interface and the second set of splines forms a position encoding interface.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: July 9, 2019
    Assignees: ILLUMINA, INC., ILLUMINA, SINGAPORE PTE. LTD.
    Inventors: Richard L. Lemoine, James Osmus, Sz-Chin Steven Lin, Beng Keong Ang
  • Publication number: 20180117587
    Abstract: A cartridge assembly that comprises a housing, including a flow cell chamber to receive a flow cell, and a well plate having liquid wells to receive desired amounts of liquids. The well plate includes a valve station, a pump station and a fluidics analysis station, and channels associated therewith. A pump assembly to manage fluid flow through the channels between the pump station and the fluidics analysis station. A rotary valve assembly that includes a rotor shaft and rotor valve positioned to rotate about a rotational axis and to selectively couple the wells to the pump station. The rotor shaft includes a dual spline configuration at the distal end thereof. The dual spline configuration has first and second sets of splines. The first set of splines forms a drive interface and the second set of splines forms a position encoding interface.
    Type: Application
    Filed: October 11, 2017
    Publication date: May 3, 2018
    Inventors: Richard L. Lemoine, James Osmus, Sz-Chin Steven Lin, Beng Keong ANG
  • Publication number: 20180111126
    Abstract: Disclosed herein are devices, systems and methods for conducting a reaction using electrowetting in a vertical or substantially vertical position. Some embodiments disclosed herein provide fluidic cartridges for use in a substantially vertical position comprising: (a) a front substrate; (b) a back substrate; (c) a droplet operations gap formed between the front substrate and the back substrate; and (d) a plurality of electrodes on the front substrate or the back substrate, wherein the plurality of electrodes are configured to transport a droplet along a substantially vertical plane defined by the front substrate and the back substrate.
    Type: Application
    Filed: March 18, 2016
    Publication date: April 26, 2018
    Applicant: ILLUMINA, INC.
    Inventors: James OSMUS, Richard L. LEMOINE, Jian GONG, Sz-Chin Steven LIN