Patents by Inventor Sz-Fan Chen

Sz-Fan Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250069881
    Abstract: Embodiments are directed to a method for minimizing electrostatic charges in a semiconductor substrate. The method includes depositing photoresist on a semiconductor substrate to form a photoresist layer on the semiconductor substrate. The photoresist layer is exposed to radiation. The photoresist layer is developed using a developer solution. The semiconductor substrate is cleaned with a first cleaning liquid to wash the developer solution from the photoresist layer. A tetramethylammonium hydroxide (TMAH) solution is applied to the semiconductor substrate to reduce charges accumulated in the semiconductor substrate.
    Type: Application
    Filed: November 7, 2024
    Publication date: February 27, 2025
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Lin CHANG, Chih-Chien WANG, Chihy-Yuan CHENG, Sz-Fan CHEN, Chien-Hung LIN, Chun-Chang CHEN, Ching-Sen KUO, Feng-Jia SHIU
  • Patent number: 12230585
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. An alignment process is performed on a first semiconductor workpiece and a second semiconductor workpiece by virtue of a plurality of workpiece pins. The first semiconductor workpiece is bonded to the second semiconductor workpiece. A shift value is determined between the first and second semiconductor workpieces by virtue of a first plurality of alignment marks on the first semiconductor workpiece and a second plurality of alignment marks on the second semiconductor workpiece. A layer of an integrated circuit (IC) structure is formed over the second semiconductor workpiece based at least in part on the shift value.
    Type: Grant
    Filed: January 24, 2024
    Date of Patent: February 18, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
  • Patent number: 12165867
    Abstract: Embodiments are directed to a method for minimizing electrostatic charges in a semiconductor substrate. The method includes depositing photoresist on a semiconductor substrate to form a photoresist layer on the semiconductor substrate. The photoresist layer is exposed to radiation. The photoresist layer is developed using a developer solution. The semiconductor substrate is cleaned with a first cleaning liquid to wash the developer solution from the photoresist layer. A tetramethylammonium hydroxide (TMAH) solution is applied to the semiconductor substrate to reduce charges accumulated in the semiconductor substrate.
    Type: Grant
    Filed: July 24, 2023
    Date of Patent: December 10, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Lin Chang, Chih-Chien Wang, Chihy-Yuan Cheng, Sz-Fan Chen, Chien-Hung Lin, Chun-Chang Chen, Ching-Sen Kuo, Feng-Jia Shiu
  • Publication number: 20240186258
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming an integrated chip. An alignment process is performed on a first semiconductor workpiece and a second semiconductor workpiece by virtue of a plurality of workpiece pins. The first semiconductor workpiece is bonded to the second semiconductor workpiece. A shift value is determined between the first and second semiconductor workpieces by virtue of a first plurality of alignment marks on the first semiconductor workpiece and a second plurality of alignment marks on the second semiconductor workpiece. A layer of an integrated circuit (IC) structure is formed over the second semiconductor workpiece based at least in part on the shift value.
    Type: Application
    Filed: January 24, 2024
    Publication date: June 6, 2024
    Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
  • Patent number: 11916022
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor processing system including an overlay (OVL) shift measurement device. The OVL shift measurement device is configured to determine an OVL shift between a first wafer and a second wafer, where the second wafer overlies the first wafer. A photolithography device is configured to perform one or more photolithography processes on the second wafer. A controller is configured to perform an alignment process on the photolithography device according to the determined OVL shift. The photolithography device performs the one or more photolithography processes based on the OVL shift.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
  • Patent number: 11769662
    Abstract: Embodiments are directed to a method for minimizing electrostatic charges in a semiconductor substrate. The method includes depositing photoresist on a semiconductor substrate to form a photoresist layer on the semiconductor substrate. The photoresist layer is exposed to radiation. The photoresist layer is developed using a developer solution. The semiconductor substrate is cleaned with a first cleaning liquid to wash the developer solution from the photoresist layer. A tetramethylammonium hydroxide (TMAH) solution is applied to the semiconductor substrate to reduce charges accumulated in the semiconductor substrate.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: September 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Lin Chang, Chih-Chien Wang, Chihy-Yuan Cheng, Sz-Fan Chen, Chien-Hung Lin, Chun-Chang Chen, Ching-Sen Kuo, Feng-Jia Shiu
  • Patent number: 11665897
    Abstract: A wafer having a first region and a second region is provided. A first topography variation exists between the first region and the second region. A first layer is formed over the first region and over the second region of the wafer. The first layer is patterned. A patterned first layer causes a second topography variation to exist between the first region and the second region. The second topography variation is smoother than the first topography variation. A second layer is formed over the first region and the second region. At least a portion of the second layer is formed over the patterned first layer.
    Type: Grant
    Filed: March 14, 2022
    Date of Patent: May 30, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chang Wu, Chihy-Yuan Cheng, Sz-Fan Chen, Shun-Shing Yang, Wei-Lin Chang, Ching-Sen Kuo, Feng-Jia Shiu, Chun-Chang Chen
  • Publication number: 20220328419
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor processing system including an overlay (OVL) shift measurement device. The OVL shift measurement device is configured to determine an OVL shift between a first wafer and a second wafer, where the second wafer overlies the first wafer. A photolithography device is configured to perform one or more photolithography processes on the second wafer. A controller is configured to perform an alignment process on the photolithography device according to the determined OVL shift. The photolithography device performs the one or more photolithography processes based on the OVL shift.
    Type: Application
    Filed: June 7, 2022
    Publication date: October 13, 2022
    Inventors: Yeong-Jyh Lin, Ching I. Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
  • Publication number: 20220301849
    Abstract: Embodiments are directed to a method for minimizing electrostatic charges in a semiconductor substrate. The method includes depositing photoresist on a semiconductor substrate to form a photoresist layer on the semiconductor substrate. The photoresist layer is exposed to radiation. The photoresist layer is developed using a developer solution. The semiconductor substrate is cleaned with a first cleaning liquid to wash the developer solution from the photoresist layer. A tetramethylammonium hydroxide (TMAH) solution is applied to the semiconductor substrate to reduce charges accumulated in the semiconductor substrate.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 22, 2022
    Inventors: Wei-Lin CHANG, Chih-Chien WANG, Chihy-Yuan CHENG, Sz-Fan CHEN, Chien-Hung LIN, Chun-Chang CHEN, Ching-Sen KUO, Feng-Jia SHIU
  • Publication number: 20220199636
    Abstract: A wafer having a first region and a second region is provided. A first topography variation exists between the first region and the second region. A first layer is formed over the first region and over the second region of the wafer. The first layer is patterned. A patterned first layer causes a second topography variation to exist between the first region and the second region. The second topography variation is smoother than the first topography variation. A second layer is formed over the first region and the second region. At least a portion of the second layer is formed over the patterned first layer.
    Type: Application
    Filed: March 14, 2022
    Publication date: June 23, 2022
    Inventors: Chun-Chang Wu, Chihy-Yuan Cheng, Sz-Fan Chen, Shun-Shing Yang, Wei-Lin Chang, Ching-Sen Kuo, Feng-Jia Shiu, Chun-Chang Chen
  • Patent number: 11362038
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes forming a plurality of upper alignment marks on a semiconductor wafer. A plurality of lower alignment marks is formed on a handle wafer and correspond to the upper alignment marks. The semiconductor wafer is bonded to the handle wafer such that centers of the upper alignment marks are laterally offset from centers of corresponding lower alignment marks. An overlay (OVL) shift is measured between the handle wafer and the semiconductor wafer by detecting the plurality of upper alignment marks and the plurality of lower alignment marks. A photolithography process is performed by a photolithography tool to partially form an integrated circuit (IC) structure over the semiconductor wafer. During the photolithography process the photolithography tool is compensatively aligned according to the OVL shift.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: June 14, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
  • Patent number: 11276699
    Abstract: A wafer having a first region and a second region is provided. A first topography variation exists between the first region and the second region. A first layer is formed over the first region and over the second region of the wafer. The first layer is patterned. A patterned first layer causes a second topography variation to exist between the first region and the second region. The second topography variation is smoother than the first topography variation. A second layer is formed over the first region and the second region. At least a portion of the second layer is formed over the patterned first layer.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: March 15, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chang Wu, Chihy-Yuan Cheng, Sz-Fan Chen, Shun-Shing Yang, Wei-Lin Chang, Ching-Sen Kuo, Feng-Jia Shiu, Chun-Chang Chen
  • Publication number: 20210375781
    Abstract: Various embodiments of the present disclosure are directed towards a method for forming a semiconductor structure. The method includes forming a plurality of upper alignment marks on a semiconductor wafer. A plurality of lower alignment marks is formed on a handle wafer and correspond to the upper alignment marks. The semiconductor wafer is bonded to the handle wafer such that centers of the upper alignment marks are laterally offset from centers of corresponding lower alignment marks. An overlay (OVL) shift is measured between the handle wafer and the semiconductor wafer by detecting the plurality of upper alignment marks and the plurality of lower alignment marks. A photolithography process is performed by a photolithography tool to partially form an integrated circuit (IC) structure over the semiconductor wafer. During the photolithography process the photolithography tool is compensatively aligned according to the OVL shift.
    Type: Application
    Filed: October 5, 2020
    Publication date: December 2, 2021
    Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
  • Publication number: 20200127000
    Abstract: A wafer having a first region and a second region is provided. A first topography variation exists between the first region and the second region. A first layer is formed over the first region and over the second region of the wafer. The first layer is patterned. A patterned first layer causes a second topography variation to exist between the first region and the second region. The second topography variation is smoother than the first topography variation. A second layer is formed over the first region and the second region. At least a portion of the second layer is formed over the patterned first layer.
    Type: Application
    Filed: December 19, 2019
    Publication date: April 23, 2020
    Inventors: Chun-Chang Wu, Chihy-Yuan Cheng, Sz-Fan Chen, Shun-Shing Yang, Wei-Lin Chang, Ching-Sen Kuo, Feng-Jia Shiu, Chun-Chang Chen
  • Patent number: 10522557
    Abstract: A wafer having a first region and a second region is provided. A first topography variation exists between the first region and the second region. A first layer is formed over the first region and over the second region of the wafer. The first layer is patterned. A patterned first layer causes a second topography variation to exist between the first region and the second region. The second topography variation is smoother than the first topography variation. A second layer is formed over the first region and the second region. At least a portion of the second layer is formed over the patterned first layer.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: December 31, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chun-Chang Wu, Chihy-Yuan Cheng, Sz-Fan Chen, Shun-Shing Yang, Wei-Lin Chang, Ching-Sen Kuo, Feng-Jia Shiu, Chun-Chang Chen
  • Publication number: 20190131313
    Abstract: A wafer having a first region and a second region is provided. A first topography variation exists between the first region and the second region. A first layer is formed over the first region and over the second region of the wafer. The first layer is patterned. A patterned first layer causes a second topography variation to exist between the first region and the second region. The second topography variation is smoother than the first topography variation. A second layer is formed over the first region and the second region. At least a portion of the second layer is formed over the patterned first layer.
    Type: Application
    Filed: October 30, 2017
    Publication date: May 2, 2019
    Inventors: Chun-Chang Wu, Chihy-Yuan Cheng, Sz-Fan Chen, Shun-Shing Yang, Wei-Lin Chang, Ching-Sen Kuo, Feng-Jia Shiu, Chun-Chang Chen