Patents by Inventor Ta-yung Yang

Ta-yung Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240128876
    Abstract: A switching control circuit for use in controlling a resonant flyback power converter generates a first driving signal and a second driving signal. The first driving signal is configured to turn on the first transistor to generate a first current to magnetize a transformer and charge a resonant capacitor. The transformer and charge a resonant capacitor are connected in series. The second driving signal is configured to turn on the second transistor to generate a second current to discharge the resonant capacitor. During a power-on period of the resonant flyback power converter, the second driving signal includes a plurality of short-pulses configured to turn on the second transistor for discharging the resonant capacitor. A pulse-width of the short-pulses of the second driving signal is short to an extent that the second current does not exceed a current limit threshold.
    Type: Application
    Filed: June 15, 2023
    Publication date: April 18, 2024
    Inventors: Yu-Chang Chen, Ta-Yung Yang, Kun-Yu Lin, Fu-Ciao Syu, Chia-Hsien Yang, Hsin-Yi Wu
  • Patent number: 11962247
    Abstract: A resonant half-bridge flyback power converter includes: a first transistor and a second transistor which form a half-bridge circuit; a transformer and a resonant capacitor connected in series and coupled to the half-bridge circuit; and a switching control circuit configured to generate a first driving signal and a second driving signal to control the first transistor and the second transistor respectively for switching the transformer to generate an output voltage. The first driving signal is configured to magnetize the transformer. The second driving signal includes at most one pulse between two consecutive pulses of the first driving signal. The switching control circuit generates a skipping cycle period when an output power is lower than a predetermined threshold. A resonant pulse of the second driving signal is skipped during the skipping cycle period. The skipping cycle period is increased in response to the decrease of the output power.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: April 16, 2024
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ta-Yung Yang, Ying-Chieh Su, Yu-Chang Chen
  • Publication number: 20240120845
    Abstract: A resonant flyback power converter includes: a first transistor and a second transistor which are configured to switch a transformer and a resonant capacitor for generating an output voltage; and a switching control circuit generating first and second driving signals for controlling the first and the second transistors. The turn-on of the first driving signal magnetizes the transformer. The second driving signal includes a resonant pulse having a resonant pulse width and a ZVS pulse during the DCM operation. The resonant pulse is configured to demagnetize the transformer. The resonant pulse has a first minimum resonant period for a first level of the output load and a second minimum resonant period for a second level of the output load. The first level is higher than the second level and the second minimum resonant period is shorter than the first minimum resonant period.
    Type: Application
    Filed: April 14, 2023
    Publication date: April 11, 2024
    Inventors: Yu-Chang Chen, Ta-Yung Yang, Kun-Yu Lin, Hsin-Yi Wu
  • Publication number: 20240120844
    Abstract: A resonant flyback power converter includes: a first and a second transistors which form a half-bridge circuit for switching a transformer and a resonant capacitor to generate an output voltage; a current-sense device for sensing a switching current of the half-bridge circuit to generate a current-sense signal; and a switching control circuit generating a first and a second driving signals for controlling the first and the second transistors. The turn-on of the first driving signal controls the half-bridge circuit to generate a positive current to magnetize the transformer and charge the resonant capacitor. The turn-on of the second driving signal controls the half-bridge circuit to generate a negative current to discharge the resonant capacitor. The switching control circuit turns off the first transistor when the positive current exceeds a positive-over-current threshold, and/or, turns off the second transistor when the negative current exceeds a negative-over-current threshold.
    Type: Application
    Filed: April 10, 2023
    Publication date: April 11, 2024
    Inventors: Kun-Yu LIN, Ta-Yung YANG, Yu-Chang CHEN, Hsin-Yi WU, Fu-Ciao SYU, Chia-Hsien YANG
  • Publication number: 20240120846
    Abstract: A resonant flyback power converter includes: a first transistor and a second transistor which are configured to switch a transformer and a resonant capacitor for generating an output voltage; and a switching control circuit generating first and second driving signals for controlling the first and the second transistors. The turn-on of the first driving signal magnetizes the transformer. During a DCM (discontinuous conduction mode) operation, the second driving signal includes a resonant pulse for demagnetizing the transformer and a ZVS (zero voltage switching) pulse for achieving ZVS of the first transistor. The resonant pulse is skipped when the output voltage is lower than a low-voltage threshold.
    Type: Application
    Filed: April 14, 2023
    Publication date: April 11, 2024
    Inventors: Yu-Chang Chen, Ta-Yung Yang, Kun-Yu Lin, Hsin-Yi Wu
  • Patent number: 11955884
    Abstract: A resonant switching power converter circuit including: a switching converter, a control circuit and a pre-charging circuit; wherein the control circuit controls a first switch of the switching converter in a pre-charging mode, so as to control electrical connections between a first power and at least one of plural capacitors of the switching converter, and to control other switches of the switching converter, so as to control the pre-charging circuit to charge at least one capacitor to a predetermined voltage; wherein in a start-up mode, the plural switches control electrical connections of the capacitors according to first and second operation signals, such that after the pre-charging mode ends, the switching converter subsequently operates in the start-up mode; wherein in the start-up mode, the first and second operation signals have respective ON periods, and the time lengths of the ON periods increase gradually.
    Type: Grant
    Filed: April 13, 2022
    Date of Patent: April 9, 2024
    Assignee: Richtek Technology Corporation
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Chung-Lung Pai
  • Patent number: 11955890
    Abstract: A switching converter circuit for switching one end of an inductor therein between plural voltages according to a pulse width modulation (PWM) signal to convert an input voltage to an output voltage. The switching converter circuit has a driver circuit including a high side driver, a low side driver, a high side sensor circuit, and a low side sensor circuit. The high side sensor circuit is configured to sense a gate-source voltage of a high side metal oxide semiconductor field effect transistor (MOSFET), to generate a low side enable signal for enabling the low side driver to switch a low side MOSFET according to the PWM signal. The low side sensor circuit is configured to sense a gate-source voltage of a low side MOSFET, to generate a high side enable signal for enabling the high side driver to switch a high side MOSFET according to the PWM signal.
    Type: Grant
    Filed: January 2, 2022
    Date of Patent: April 9, 2024
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ting-Wei Liao, Chien-Yu Chen, Kun-Huang Yu, Chien-Wei Chiu, Ta-Yung Yang
  • Publication number: 20240079396
    Abstract: A package structure includes a first carrier, a second carrier, and a first electronic device. The first carrier is electrically connected to a first voltage. The second carrier includes a first substrate and a first interconnect structure. The first substrate is in contact with the first carrier, the first interconnect structure is electrically connected to a second voltage, and the first interconnect structure and the first carrier are deposited on two opposite sides of the first substrate. The first electronic device is deposited on the first interconnect structure and away from the first carrier. The first electronic device is in contact with the first interconnect structure.
    Type: Application
    Filed: November 30, 2022
    Publication date: March 7, 2024
    Inventors: Lung-Sheng LIN, Chih-Feng HUANG, Ta-Yung YANG
  • Publication number: 20240072633
    Abstract: The present invention provides a resonant switched capacitor voltage converter (RSCC), which is coupled to and operates synchronously with another RSCC. The RSCC includes: plural switches, a resonant inductor, a resonant capacitor, and a control circuit. The control circuit controls the switches, so that the resonant capacitor and the resonant inductor are connected in series to each other, to perform resonant operation in a switching period, thus converting an input voltage to an output voltage. The control circuit generates a zero current signal and a first synchronization signal when a resonant inductor current flowing through the resonant inductor is zero. The control circuit turns off at least one corresponding switch according to the zero current signal. The control circuit turns on at least one corresponding switch according to the zero-current signal and a second synchronization signal, so that the RSCC operates in synchronization with at least another RSCC.
    Type: Application
    Filed: August 14, 2023
    Publication date: February 29, 2024
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Wei-Hsu Chang, Chao-Chi Chen
  • Publication number: 20240063720
    Abstract: A conversion control circuit controls plural stackable sub-converters which are coupled in parallel to generate an output power to a load, the conversion control circuit includes: a current sharing terminal, wherein a current sharing signal is configured to be connected to the current sharing terminals, in parallel, of the plurality of the conversion control circuits; and a current sharing circuit, configured to generate or receive the current sharing signal which is generated according to an output current of the output power; wherein the conversion control circuit adjusts the power stage circuit according to the current sharing signal for current sharing among the plural stackable sub-converters.
    Type: Application
    Filed: March 21, 2023
    Publication date: February 22, 2024
    Inventors: Ta-Yung YANG, Wei-Hsu CHANG, Kuo-Chi LIU, Chao-Chi CHEN
  • Patent number: 11876453
    Abstract: A switching converter circuit, which switches one terminal of an inductor to different voltages, includes a high side MOSFET, a low side MOSFET, and a driver circuit which includes a high side driver, a low side driver, and a dead time control circuit. According to an output current, The dead time control circuit adaptively delays a low side driving signal to generate a high side enable signal for enabling the high side driver to generate a high side driving signal according to a pulse width modulation (PWM) signal; and/or adaptively delays the high side driving signal to generate a low side enable signal for enabling the low side driver to generate the low side driving signal according to the PWM signal, so as to adaptively control a dead time in which the high side MOSFET and the low side MOSFET are both not conductive.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: January 16, 2024
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ting-Wei Liao, Chien-Yu Chen, Kun-Huang Yu, Chien-Wei Chiu, Ta-Yung Yang
  • Patent number: 11843321
    Abstract: A control circuit for controlling a power supply circuit to provide power to a system device which includes a communication circuit includes: a pulse width modulation (PWM) controller configured to switch a transformer of the power supply circuit to generate a first output voltage; and a switched capacitor converter configured to generate a second output voltage according to the first output voltage. The second output voltage provides power to the communication circuit, wherein the communication circuit generates a power saving signal to control the PWM controller and the switched capacitor converter. When the power saving signal is enabled, the first output voltage is decreased and a duty ratio of the switched capacitor converter is increased.
    Type: Grant
    Filed: November 24, 2021
    Date of Patent: December 12, 2023
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Ta-Yung Yang, Wei-Hsu Chang, Yu-Chang Chen, Tsung-Wei Huang, Shui-Mu Lin
  • Publication number: 20230396162
    Abstract: A switched capacitor voltage converter circuit for converting a first voltage to a second voltage includes: an output capacitor; a switched capacitor converter; and a control circuit. The switched capacitor converter includes: a switch circuit including fourth switches; an inductor coupled between the switch circuit and the output capacitor; and a flying capacitor coupled to the switch circuit, wherein the flying capacitor and the output capacitor constitute a voltage divider. The control circuit generates a PWM signal according to the second voltage and generates switch signals according to the PWM signal to control the switch circuit, so as to convert the first voltage to the second voltage. The control circuit decides whether the switched capacitor converter operates in a boundary conduction mode, a discontinuous conduction mode or a continuous conduction mode according to an output current or an output current related signal.
    Type: Application
    Filed: May 4, 2023
    Publication date: December 7, 2023
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Wei-Hsu Chang
  • Publication number: 20230361674
    Abstract: A switched capacitor voltage converter circuit includes: a switched capacitor converter and a control circuit. The switched capacitor converter includes at least one resonant capacitor, switches and at least one inductor. The control circuit generates a pulse width modulation (PWM) signal according to a first voltage or a second voltage and generates a control signal according to the PWM signal and a zero current detection signal. The control signal controls the switched capacitor converter by operating the corresponding switches to switch electrical connection of the inductor, so as to convert the first voltage to the second voltage or convert the second voltage to the first voltage.
    Type: Application
    Filed: April 13, 2023
    Publication date: November 9, 2023
    Inventors: Kuo-Chi Liu, Ta-Yung Yang
  • Publication number: 20230336075
    Abstract: A power converter includes first to fourth switches, a flying capacitor, an inductor, an output capacitor and a control circuit. The first to fourth switches are sequentially coupled in cascode. The first switch receives an input voltage, and the fourth switch is further coupled to a ground terminal. The flying capacitor is coupled across the second switch and the third switch, the inductor is coupled to the second switch, the third switch and the output capacitor. The output capacitor is used to output an output voltage. In a non-regulated mode, the control circuit switches the first to fourth switches according to a resonant frequency. In a regulated mode, the control circuit switches the first to fourth switches according to a regulated frequency exceeding the resonant frequency. When the flying capacitor is coupled to the inductor, the flying capacitor and the inductor can form a resonant circuit having the resonant frequency.
    Type: Application
    Filed: April 5, 2023
    Publication date: October 19, 2023
    Applicant: RICHTEK TECHNOLOGY CORP.
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Wei-Hsu Chang
  • Publication number: 20230336074
    Abstract: A power converter includes first to fourth switches, a flying capacitor, an inductor, an output capacitor and a control circuit. The first to fourth switches are sequentially coupled in cascode. The first switch is used to receive an input voltage. The flying capacitor is coupled across the second switch and the third switch, the inductor is coupled to the second switch, the third switch and the output capacitor. The output capacitor is used to output an output voltage. When the input voltage is less than an input voltage threshold, the control circuit is used to switch the first to fourth switches according to a resonant frequency. When the input voltage exceeds the input voltage threshold, the control circuit switch is used to the first to fourth switches according to a regulated frequency exceeding the resonant frequency.
    Type: Application
    Filed: March 20, 2023
    Publication date: October 19, 2023
    Applicant: RICHTEK TECHNOLOGY CORP.
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Wei-Hsu Chang
  • Patent number: 11742760
    Abstract: A resonant switching power converter includes: a power stage circuit and a driving circuit. The power stage circuit includes: a resonant capacitor, a resonant inductor and switches. The driving circuit includes: drivers for driving the switches; and a power supply circuit for providing driving powers to the drivers. The power supply circuit includes: a voltage booster circuit generating a booster power supply according to a clock signal, a DC voltage and an output related signal; driving capacitors, wherein a voltage across each driving capacitor corresponds to one driving power; and supply diodes, which are coupled in series from the booster power supply along a forward direction of the supply diodes. A backward end of each supply diode is coupled to a positive end of one corresponding driving power, to charge one corresponding driving capacitor, thus generating the corresponding driving power.
    Type: Grant
    Filed: November 6, 2021
    Date of Patent: August 29, 2023
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Chung-Lung Pai
  • Patent number: 11742751
    Abstract: A resonant switching power converter includes: a first power stage circuit; a second power stage circuit; a controller; and a current sensing circuit configured to sense a first charging/discharging resonant current flowing through a first charging/discharging inductor of the first power stage circuit and sense a second charging/discharging resonant current flowing through a second charging/discharging inductor of the second power stage circuit, to generate a corresponding first current sensing signal and a corresponding second current sensing signal, respectively. The controller adjusts at least one of a first delay interval, a second delay interval, a third delay interval, a fourth delay interval, and/or input voltages, according to a first current sensing signal and a second current sensing signal, so that a constant ratio between an output current of the first power stage circuit and an output current of the second power stage circuit is achieved.
    Type: Grant
    Filed: October 12, 2021
    Date of Patent: August 29, 2023
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Chung-Lung Pai
  • Publication number: 20230268825
    Abstract: A power supply system includes a power factor correction converter circuit and an isolated power converter circuit, wherein the power factor correction converter circuit corrects the power factor of a rectified power to generate a first output power, and the isolated power converter circuit converts the first output power to generate a second output power. The isolated power converter circuit includes a transformer, and the transformer includes a primary winding, a secondary winding, and an auxiliary winding. The auxiliary winding generates an auxiliary voltage which is related to the second output power. When the auxiliary voltage is lower than a disabled threshold, indicating that the voltage of the second output power is lower than a threshold, the power factor correction converter circuit provides a bypassing connection from the rectified power to the first output power and stops correcting the power factor of the rectified power.
    Type: Application
    Filed: January 19, 2023
    Publication date: August 24, 2023
    Inventors: Wei-Hsu Chang, Ta-Yung Yang, Shih-Ho Hsu, Mao-Hui Kuo
  • Publication number: 20230246548
    Abstract: A switched capacitor voltage converter circuit for converting a first voltage to a second voltage, includes: a switched capacitor converter and a control circuit. The switched capacitor converter includes at least two capacitors, plural switches and at least one inductor. In a mode switching period wherein the switched capacitor converter switches from a present conversion mode to a next conversion mode, at least two forward switches of the plural switches operate in a unidirectional conduction mode. Each of the forward switches provides a current channel that unidirectionally flows toward the second voltage in the unidirectional conduction mode. The switched capacitor voltage converter circuit is also operable to convert the second voltage to the first voltage.
    Type: Application
    Filed: January 1, 2023
    Publication date: August 3, 2023
    Inventors: Kuo-Chi Liu, Ta-Yung Yang, Wei-Hsu Chang