Patents by Inventor Tadashi Fujieda

Tadashi Fujieda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7710012
    Abstract: An amorphous carbon layer sticking on a carbon nanotube surface is remarkably reduced when a carbon nanotube is joined to a conductive substrate by bringing a single fibrous carbonaceous material in contact with the tip of the conductive substrate and covering at least a part of the contact portion with a conductive material while at lest either of the fibrous carbonaceous material or the conductive substrate is heated in a vacuum.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: May 4, 2010
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tadashi Fujieda, Kishio Hidaka, Mitsuo Hayashibara
  • Publication number: 20080315747
    Abstract: An electron emitting element having a cap portion 103 with a closed structure and a columnar axis portion 101a comprising a tubular material composed mostly of carbon and a conductive base material for immobilizing the tubular material, characterized in that; the cap portion 103 includes a plurality of five-membered ring structures 104 made by atoms which constitute the tubular material and the distance between the five-membered ring structures 104 is 30 nm or more.
    Type: Application
    Filed: March 25, 2008
    Publication date: December 25, 2008
    Inventors: Makoto Okai, Tadashi Fujieda, Kishio Hidaka, Mitsuo Hayashibara, Shun-ichi Watanabe
  • Publication number: 20080169743
    Abstract: The present invention provides a field emission electron gun and its operating method. The field emission electron gun includes: an electron source including a fibrous carbon substance and a conductive base material for supporting the substance; a drawer device for causing electrons to be emitted by field emission; an accelerator for accelerating the electrons; and a means for heating the electron source. In the electron gun, the electron source is heated and held at the heating temperature before field emission, and thereafter the lowest heating temperature causing a range of fluctuation in the field emission current to fall within a predetermined value is adjusted when needed. By employing the electron gun and its operating method of the present invention, provided are various electron beam applied apparatuses each capable of continuously operating for a long time while being low in noise and high in resolution.
    Type: Application
    Filed: August 2, 2007
    Publication date: July 17, 2008
    Inventors: Tadashi Fujieda, Kishio Hidaka, Mitsuo Hayashibara, Shun-ichi Watanabe
  • Patent number: 7388199
    Abstract: A probe is made by attaching a carbon nanotube 12 to a mounting base end 13, which eliminates the effects of a carbon contamination film, to increase the bonding strength, increase the conductivity of the probe, and strengthen the bonding performance thereof by coating the entire circumference of the nanotube and the base with a coating film, rather than coating just one side. The work of mounting the carbon nanotube and mounting base end are performed under observation by a microscope. Further, the carbon contamination film 14 formed by an electron microscope is stripped off at a stage before bonding by the coating film.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: June 17, 2008
    Assignee: Hitachi Kenki Fine Tech Co., Ltd.
    Inventors: Takafumi Morimoto, Tooru Shinaki, Yoshiyuki Nag'No, Yukio Kenbou, Yuuichi Kunitomo, Takenori Hiroki, Tooru Kurenuma, Hiroaki Yanagimoto, Hiroshi Kuroda, Shigeru Miwa, Ken Murayama, Mitsuo Hayashibara, Kishio Hidaka, Tadashi Fujieda
  • Publication number: 20080067407
    Abstract: An amorphous carbon layer sticking on a carbon nanotube surface is remarkably reduced when a carbon nanotube is joined to a conductive substrate by bringing a single fibrous carbonaceous material in contact with the tip of the conductive substrate and covering at least a part of the contact portion with a conductive material while at lest either of the fibrous carbonaceous material or the conductive substrate is heated in a vacuum.
    Type: Application
    Filed: April 12, 2007
    Publication date: March 20, 2008
    Inventors: Tadashi Fujieda, Kishio Hidaka, Mitsuo Hayashibara
  • Publication number: 20080029700
    Abstract: The object of the present invention is to enable the optical axis of an electron beam of a field emission electron gun mounting thereon an electron gun composed of a fibrous carbon material to be adjusted easily. Moreover, it is also to obtain an electron beam whose energy spread is narrower than that of the electron gun. Further, it is also to provide a high resolution electron beam applied device mounting thereon the field emission electron gun. The means for achieving the objects of the present invention is in that the fibrous carbon material is coated with a material having a band gap, in the field emission electron gun including an electron source composed of a fibrous carbon material and an electrically conductive base material for supporting the fibrous carbon material, an extractor for field-emitting electrons, and an accelerator for accelerating the electrons. Moreover, it is also to apply the field emission electron gun to various kinds of electron beam applied devices.
    Type: Application
    Filed: August 1, 2007
    Publication date: February 7, 2008
    Inventors: TADASHI FUJIEDA, Makoto Okai, Kishio Hidaka, Mitsuo Hayashibara, Shunichi Watanabe
  • Patent number: 7239261
    Abstract: The purpose of the present invention is to provide an easy-to-manufacture electromagnetic wave absorption material usable from submillimeter wave region to millimeter wave region with an excellent radio wave absorbing performance and a variety of usage thereof. The present invention is characterized by an electromagnetic wave absorption material comprised of a dispersions of at least one of the materials: a multi-layer hollow globule of carbon, a schungite carbon, and the schungite ore; mixed into a matter having a high electrical resistivity. The invention is further characterized by an electronic device, an optical transmission module, an optical reception module, a high frequency telecommunication equipment, and a stop-free automated tollgate system, wherein at least a part of their board, electronic element, and circuit wiring are covered with said electromagnetic wave absorption material.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: July 3, 2007
    Assignee: Hitachi Ltd.
    Inventors: Tadashi Fujieda, Kishio Hidaka, Shinzou Ikeda, Mitsuo Hayashibara, Noriyuki Taguchi
  • Patent number: 7220481
    Abstract: A high dielectric composite material obtained by subjecting submicron particles of an inorganic filler containing a metal as its essential component to an insulating treatment such as a chemical treatment, further subjecting to a surface treatment for improving their compatibility with organic resins, and then dispersing in an organic resin, has a dielectric constant of 15 or above, with its dielectric loss tangent in the frequency region of from 100 MHz to 80 GHz being 0.1 or less, and can therefore be used effectively for multilayer wiring boards and module substrates.
    Type: Grant
    Filed: February 5, 2002
    Date of Patent: May 22, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Yuichi Satsu, Akio Takahashi, Tadashi Fujieda, Takumi Ueno, Haruo Akahoshi
  • Patent number: 7218266
    Abstract: An electromagnetic wave absorber for use in the high frequency range above 1 Ghz and a composite member are characterized by the fact that magnetic metal grains are covered with ceramic above 20 volume %. Further, a method of manufacturing the electromagnetic absorber and the composite member is characterized by the fact that composite magnetic particles, in which a plurality of magnetic metal grains and ceramic are unified, are formed through a mechanical alloying method applied to a composite powder composed of magnetic metal powder and ceramic powder. The electromagnetic wave absorber can be used in a semiconductor device, an optical sending module, an optical receiving module, an optical sending and receiving module, an automatic tollgate in which erroneous operation due to electromagnetic wave disturbance is provided by use of the electromagnetic wave absorber.
    Type: Grant
    Filed: February 28, 2005
    Date of Patent: May 15, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Tadashi Fujieda, Shinzou Ikeda, Sai Ogawa, Teruyoshi Abe, Yasuhisa Aono
  • Publication number: 20070051887
    Abstract: The present invention provides a cantilever having a base fixed to an inspecting apparatus, a beam protruding from the base, and a probe fixed to an end of the beam, wherein: the probe is formed by use of a carbon nanotube; and the probe is fixed by metal layers from at least two directions when the cantilever is operated, the probe protrudes in a direction in which a sample is fixed. It is possible to prevent the probe from warping and suppress image failures during observation of a sample.
    Type: Application
    Filed: August 31, 2006
    Publication date: March 8, 2007
    Inventors: Kishio Hidaka, Motoyuki Hirooka, Mitsuo Hayashibara, Tadashi Fujieda, Hiroki Tanaka, Noriaki Takeshi, Takafumi Morimoto, Satoshi Sekino, Masato Takashina, Yuki Uozumi
  • Publication number: 20060284084
    Abstract: A method of producing a probe by attaching a carbon nanotube etc. to a mounting base end and bonding it there using a carbon film etc., which method of producing a probe eliminates the effects of a carbon contamination film to increase the bonding strength, increases the conductivity of the probe, and strengthens the bonding performance by coating the entire circumference rather than coating one side, the probe, and a scanning probe microscope are provided. The method of producing a probe is a method of producing a probe comprised of a carbon nanotube 12, a mounting base ends 13 holding this carbon nanotube, and a coating film 17 bonding the carbon nanotube to a mounting base, comprising performing the mounting work of the carbon nanotube and mounting base end under observation by a microscope and stripping off the carbon contamination film 14 formed by an electron microscope at a stage before bonding by the coating film.
    Type: Application
    Filed: September 3, 2004
    Publication date: December 21, 2006
    Inventors: Takafumi Morimoto, Tooru Seinaki, Yoshiyuki Nag-No, Yukio Kenbou, Yuuichi Xunitomo, Takenori Hiroki, Tooru Kurenuma, Hiroaki Yanagimoto, Hiroshi Kuroda, Shigeru Miwa, Ken Murayama, Mitsuo Hayashirara, Kishio Hidaka, Tadashi Fujieda
  • Patent number: 7151268
    Abstract: A field-emission electron gun includes a field-emission cathode including a single fiber-like carbon substance and an electrically-conductive substrate for supporting the substance, an extractor for field-emitting electrons, an accelerating electrode for accelerating the electrons, an extracting power-supply for applying extracting voltage to the extractor, an accelerating power-supply for applying accelerating voltage to the accelerating electrode, and a unit for detecting and monitoring a part of emission current. In this field-emission electron gun, if emission-variation amount has become larger than a predetermined value, the extracting voltage is automatically boosted for a constant length of time, thereby increasing the emission current up to a predetermined value. Further, extracting voltage at the time of boosting the extracting voltage, voltage-boosting time, and the emission current are recorded, then being feed-backed to voltage-boosting conditions for the next-time extracting voltage.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: December 19, 2006
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Tadashi Fujieda, Kishio Hidaka, Mitsuo Hayashibara
  • Publication number: 20060001350
    Abstract: A field emission electron gun has a field emission cathode composed of a carbon fiber and a conductive base for supporting the carbon fiber, an extractor for causing the field emission of electrons, and an accelerator for accelerating the electrons. The carbon fiber contains at least one of trivalent and pentavalent elements. In particular, the trivalent and pentavalent elements are boron and/or nitrogen. The content of at least one of boron and nitrogen in the carbon fiber is 0.1% to 5% at an atomic weight ratio of the contained element to carbon. The diameter of the carbon fiber is 20 nm to 200 nm. Such an electron gun can have a high-brightness electron beam with a narrow energy width. The field emission electron gun is applied to various electron beam apparatus.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 5, 2006
    Inventors: Tadashi Fujieda, Kishio Hidaka, Mitsuo Hayashibara
  • Publication number: 20050212440
    Abstract: A field-emission electron gun includes a field-emission cathode including a single fiber-like carbon substance and an electrically-conductive substrate for supporting the substance, an extractor for field-emitting electrons, an accelerating electrode for accelerating the electrons, an extracting power-supply for applying extracting voltage to the extractor, an accelerating power-supply for applying accelerating voltage to the accelerating electrode, and a unit for detecting and monitoring a part of emission current. In this field-emission electron gun, if emission-variation amount has become larger than a predetermined value, the extracting voltage is automatically boosted for a constant length of time, thereby increasing the emission current up to a predetermined value. Further, extracting voltage at the time of boosting the extracting voltage, voltage-boosting time, and the emission current are recorded, then being feed-backed to voltage-boosting conditions for the next-time extracting voltage.
    Type: Application
    Filed: February 17, 2005
    Publication date: September 29, 2005
    Inventors: Tadashi Fujieda, Kishio Hidaka, Mitsuo Hayashibara
  • Patent number: 6937184
    Abstract: A millimeter wave radar for the purpose of automatic operation or collision prevention of a vehicle which solves the problem that a side lobe of a transmitted electromagnetic wave is reflected by surrounding bodies and the reflected wave is received, with the result that unnecessary bodies may also be detected. A layer higher in dielectric loss than a radome or a magnetic loss layer and a conductor layer in a mesh form are embedded in a part of the inside surface of the radome, whereby it is possible to provide a millimeter wave radar which is light in weight, excellent in weathering performance, inexpensive, and excellent in detection performance.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: August 30, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Tadashi Fujieda, Hiroshi Kuroda, Terumi Nakazawa, Mitsushige Suzuki
  • Patent number: 6930313
    Abstract: A high reliability emission source is constructed to secure the ohmic contact between a carbon nanotube and an electrically conductive base material, so as to ensure sufficient joining strength, and to provide for easy beam shaft adjustment. An electron microscope for realizing high resolution, high brightness, a reduction in sample damage due to a reduction in acceleration voltage, a reduction in cost and compactness, and an electron beam drawing device for realizing high definition, high efficiency, a reduction in cost and compactness in comparison with the conventional device, is achieved by using this high reliability emission source. In the emission source, the carbon nanotube is attached to the tip central portion of the electrically conductive base material through an electrically conductive joining material or an organic material by carbonization-processing the organic material by heat treatment, or by diffusive joining.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: August 16, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Tadashi Fujieda, Kishio Hidaka, Mitsuo Hayashibara, Shuichi Suzuki, Yoshimichi Numata, Toshiaki Horiuchi
  • Patent number: 6924971
    Abstract: A high dielectric composite material obtained by subjecting submicron particles of an inorganic filler containing a metal as its essential component to an insulating treatment such as a chemical treatment, further subjecting to a surface treatment for improving their compatibility with organic resins, and then dispersing in an organic resin, has a dielectric constant of 15 or above, with its dielectric loss tangent in the frequency region of from 100 MHz to 80 GHz being 0.1 or less, and can therefore be used effectively for multilayer wiring boards and module substrates.
    Type: Grant
    Filed: August 7, 2002
    Date of Patent: August 2, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Yuichi Satsu, Akio Takahashi, Tadashi Fujieda, Takumi Ueno, Haruo Akahoshi
  • Patent number: 6919387
    Abstract: An electromagnetic wave absorber for use in the high frequency range above 1 Ghz and a composite member are characterized by the fact that magnetic metal grains are covered with ceramic above 20 volume %. Further, a method of manufacturing the electromagnetic absorber and the composite member is characterized by the fact that composite magnetic particles, in which a plurality of magnetic metal grains and ceramic are unified, are formed through a mechanical alloying method applied to a composite powder composed of magnetic metal powder and ceramic powder. The electromagnetic wave absorber can be used in a semiconductor device, an optical sending module, an optical receiving module, an optical sending and receiving module, an automatic tollgate in which erroneous operation due to electromagnetic wave disturbance is provided by use of the electromagnetic wave absorber.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: July 19, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Tadashi Fujieda, Shinzou Ikeda, Sai Ogawa, Teruyoshi Abe, Yasuhisa Aono
  • Publication number: 20050140539
    Abstract: An electromagnetic wave absorber for use in the high frequency range above 1 Ghz and a composite member are characterized by the fact that magnetic metal grains are covered with ceramic above 20 volume %. Further, a method of manufacturing the electromagnetic absorber and the composite member is characterized by the fact that composite magnetic particles, in which a plurality of magnetic metal grains and ceramic are unified, are formed through a mechanical alloying method applied to a composite powder composed of magnetic metal powder and ceramic powder. The electromagnetic wave absorber can be used in a semiconductor device, an optical sending module, an optical receiving module, an optical sending and receiving module, an automatic tollgate in which erroneous operation due to electromagnetic wave disturbance is provided by use of the electromagnetic wave absorber.
    Type: Application
    Filed: February 28, 2005
    Publication date: June 30, 2005
    Inventors: Tadashi Fujieda, Shinzou Ikeda, Sai Ogawa, Teruyoshi Abe, Yasuhisa Aono
  • Publication number: 20050072360
    Abstract: The method by which a small amount of gaseous organic metal is loaded in a vacuum atmosphere, the gaseous organic metal is decomposed by irradiation with an electron beam, and metal components are deposited on a beam-irradiated portion has the problem that the deposited portion is rendered amorphous by hydrocarbon contamination, so that the conductivity and strength of the deposit considerably deteriorate. The invention solves the problem by a method by which the gaseous organic metal is decomposed by irradiation with the electron beam and the metal components are deposited on the beam-irradiated portion, wherein the deposited portion is irradiated with a laser, heated by a heater, or irradiated with infrared rays during deposition, thereby allowing the molding of a crystalline metal deposit with excellent conductivity and strength.
    Type: Application
    Filed: August 4, 2004
    Publication date: April 7, 2005
    Inventors: Kishio Hidaka, Tadashi Fujieda, Mitsuo Hayashibara