Patents by Inventor Takaaki Koen

Takaaki Koen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9412060
    Abstract: A semiconductor device capable of wireless communication, which has high reliability in terms of resistance to external force, in particular, pressing force and can prevent electrostatic discharge in an integrated circuit without preventing reception of an electric wave. The semiconductor device includes an on-chip antenna connected to the integrated circuit and a booster antenna which transmits a signal or power included in a received electric wave to the on-chip antenna without contact. In the semiconductor device, the integrated circuit and the on-chip antenna are interposed between a pair of structure bodies formed by impregnating a fiber body with a resin. One of the structure bodies is provided between the on-chip antenna and the booster antenna. A conductive film having a surface resistance value of approximately 106 to 1014 ?/cm2 is formed on at least one surface of each structure body.
    Type: Grant
    Filed: September 29, 2014
    Date of Patent: August 9, 2016
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato, Takaaki Koen, Yuto Yakubo, Makoto Yanagisawa, Hisashi Ohtani, Eiji Sugiyama, Nozomi Horikoshi
  • Publication number: 20150014419
    Abstract: A semiconductor device capable of wireless communication, which has high reliability in terms of resistance to external force, in particular, pressing force and can prevent electrostatic discharge in an integrated circuit without preventing reception of an electric wave. The semiconductor device includes an on-chip antenna connected to the integrated circuit and a booster antenna which transmits a signal or power included in a received electric wave to the on-chip antenna without contact. In the semiconductor device, the integrated circuit and the on-chip antenna are interposed between a pair of structure bodies formed by impregnating a fiber body with a resin. One of the structure bodies is provided between the on-chip antenna and the booster antenna. A conductive film having a surface resistance value of approximately 106 to 1014 ?/cm2 is formed on at least one surface of each structure body.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Kiyoshi KATO, Takaaki KOEN, Yuto YAKUBO, Makoto YANAGISAWA, Hisashi OHTANI, Eiji SUGIYAMA, Nozomi HORIKOSHI
  • Patent number: 8872331
    Abstract: A semiconductor device capable of wireless communication, which has high reliability in terms of resistance to external force, in particular, pressing force and can prevent electrostatic discharge in an integrated circuit without preventing reception of an electric wave. The semiconductor device includes an on-chip antenna connected to the integrated circuit and a booster antenna which transmits a signal or power included in a received electric wave to the on-chip antenna without contact. In the semiconductor device, the integrated circuit and the on-chip antenna are interposed between a pair of structure bodies formed by impregnating a fiber body with a resin. One of the structure bodies is provided between the on-chip antenna and the booster antenna. A conductive film having a surface resistance value of approximately 106 to 1014 ?/cm2 is formed on at least one surface of each structure body.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: October 28, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato, Takaaki Koen, Yuto Yakubo, Makoto Yanagisawa, Hisashi Ohtani, Eiji Sugiyama, Nozomi Horikoshi
  • Publication number: 20110186949
    Abstract: A semiconductor device capable of wireless communication, which has high reliability in terms of resistance to external force, in particular, pressing force and can prevent electrostatic discharge in an integrated circuit without preventing reception of an electric wave. The semiconductor device includes an on-chip antenna connected to the integrated circuit and a booster antenna which transmits a signal or power included in a received electric wave to the on-chip antenna without contact. In the semiconductor device, the integrated circuit and the on-chip antenna are interposed between a pair of structure bodies formed by impregnating a fiber body with a resin. One of the structure bodies is provided between the on-chip antenna and the booster antenna. A conductive film having a surface resistance value of approximately 106 to 1014 ?/cm2 is formed on at least one surface of each structure body.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 4, 2011
    Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
    Inventors: Shunpei YAMAZAKI, Jun KOYAMA, Kiyoshi KATO, Takaaki KOEN, Yuto YAKUBO, Makoto YANAGISAWA, Hisashi OHTANI, Eiji SUGIYAMA, Nozomi HORIKOSHI
  • Patent number: 7932589
    Abstract: A semiconductor device capable of wireless communication, which has high reliability in terms of resistance to external force, in particular, pressing force and can prevent electrostatic discharge in an integrated circuit without preventing reception of an electric wave. The semiconductor device includes an on-chip antenna connected to the integrated circuit and a booster antenna which transmits a signal or power included in a received electric wave to the on-chip antenna without contact. In the semiconductor device, the integrated circuit and the on-chip antenna are interposed between a pair of structure bodies formed by impregnating a fiber body with a resin. One of the structure bodies is provided between the on-chip antenna and the booster antenna. A conductive film having a surface resistance value of approximately 106 to 1014 ?/cm2 is formed on at least one surface of each structure body.
    Type: Grant
    Filed: July 21, 2008
    Date of Patent: April 26, 2011
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato, Takaaki Koen, Yuto Yakubo, Makoto Yanagisawa, Hisashi Ohtani, Eiji Sugiyama, Nozomi Horikoshi
  • Patent number: 7605761
    Abstract: An antenna capable of receiving circularly polarized waves and performing impedance matching between the antenna and an IC (integrated circuit) of a semiconductor device, and a semiconductor device having such an antenna. The antenna has a first conductor pattern with a loop configuration having a cut section, a second conductor pattern, a third conductor pattern, and a feeding section. A first end portion of the second conductor pattern and a first end portion of the third conductor pattern are connected to the first conductor pattern. A second end portion of the second conductor pattern and a second end portion of the third conductor pattern are connected to the feeding section. The total length of the second conductor pattern is longer than the total length of the third conductor pattern, and the second conductor pattern is placed closer to the cut section than the third conductor pattern is.
    Type: Grant
    Filed: November 13, 2007
    Date of Patent: October 20, 2009
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Makoto Yanagisawa, Takaaki Koen
  • Publication number: 20090085182
    Abstract: A semiconductor device capable of wireless communication, which has high reliability in terms of resistance to external force, in particular, pressing force and can prevent electrostatic discharge in an integrated circuit without preventing reception of an electric wave. The semiconductor device includes an on-chip antenna connected to the integrated circuit and a booster antenna which transmits a signal or power included in a received electric wave to the on-chip antenna without contact. In the semiconductor device, the integrated circuit and the on-chip antenna are interposed between a pair of structure bodies formed by impregnating a fiber body with a resin. One of the structure bodies is provided between the on-chip antenna and the booster antenna. A conductive film having a surface resistance value of approximately 106 to 1014 ?/cm2 is formed on at least one surface of each structure body.
    Type: Application
    Filed: July 21, 2008
    Publication date: April 2, 2009
    Inventors: Shunpei Yamazaki, Jun Koyama, Kiyoshi Kato, Takaaki Koen, Yuto Yakubo, Makoto Yanagisawa, Hisashi Ohtani, Eiji Sugiyama, Nozomi Horikoshi
  • Publication number: 20080158092
    Abstract: An antenna for an electromagnetic induction method, in which unevenness in current density distribution is suppressed so that a magnetic field with reduced distortion is generated. In addition, a semiconductor device with less variation in response frequency and communication distance is also provided. The antenna has a loop-like shaped conductive structure with a cut portion in a part thereof and cross-sectional surfaces of the conductive structure face each other in the cut portion. In addition, the conductive structure of the antenna is electrically coupled to have capacity in the cut portion. The semiconductor device has the antenna and an integrated circuit which is connected to the antenna in a power feeding portion.
    Type: Application
    Filed: December 18, 2007
    Publication date: July 3, 2008
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuto Yakubo, Takaaki Koen
  • Publication number: 20080129606
    Abstract: An antenna capable of receiving circularly polarized waves and performing impedance matching between the antenna and an IC (integrated circuit) of a semiconductor device, and a semiconductor device having such an antenna. The antenna has a first conductor pattern with a loop configuration having a cut section, a second conductor pattern, a third conductor pattern, and a feeding section. A first end portion of the second conductor pattern and a first end portion of the third conductor pattern are connected to the first conductor pattern. A second end portion of the second conductor pattern and a second end portion of the third conductor pattern are connected to the feeding section. The total length of the second conductor pattern is longer than the total length of the third conductor pattern, and the second conductor pattern is placed closer to the cut section than the third conductor pattern is.
    Type: Application
    Filed: November 13, 2007
    Publication date: June 5, 2008
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Makoto Yanagisawa, Takaaki Koen