Patents by Inventor Takamichi Sumitomo

Takamichi Sumitomo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120061643
    Abstract: A GaN-based semiconductor light emitting device 11a includes a substrate 13 composed of a GaN-based semiconductor having a primary surface 13a tilting from the c-plane toward the m-axis at a tilt angle ? of more than or equal to 63 degrees and less than 80 degrees, a GaN-based semiconductor epitaxial region 15, an active layer 17, an electron blocking layer 27, and a contact layer 29. The active layer 17 is composed of a GaN-based semiconductor containing indium. The substrate 13 has a dislocation density of 1×107 cm?2 or less. In the GaN-based semiconductor light emitting device 11a provided with the active layer containing indium, a decrease in quantum efficiency under high current injection can be moderated.
    Type: Application
    Filed: November 14, 2011
    Publication date: March 15, 2012
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yohei Enya, Takashi Kyono, Takamichi Sumitomo, Katsushi Akita, Masaki Ueno, Takao Nakamura
  • Publication number: 20120058583
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 8, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke Yoshizumi, Yohei Enya, Takashi Kyono, Masahiro Adachi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Shinji Tokuyama, Koji Katayama, Takao Nakamura, Takatoshi Ikegami
  • Publication number: 20120008660
    Abstract: Provided is a III-nitride semiconductor laser allowing for provision of a low threshold with use of a semipolar plane. A primary surface 13a of a semiconductor substrate 13 is inclined at an angle of inclination AOFF in the range of not less than 50 degrees and not more than 70 degrees toward the a-axis direction of GaN with respect to a reference plane perpendicular to a reference axis Cx along the c-axis direction of GaN. A first cladding layer 15, an active layer 17, and a second cladding layer 19 are provided on the primary surface 13a of the semiconductor substrate 13. The well layers 23a of the active layer 17 comprise InGaN. A polarization degree P in the LED mode of emission from the active layer of the semiconductor laser that reaches lasing is not less than ?1 and not more than 0.1.
    Type: Application
    Filed: August 17, 2011
    Publication date: January 12, 2012
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kei FUJII, Masaki UENO, Katsushi AKITA, Takashi KYONO, Yusuke YOSHIZUMI, Takamichi SUMITOMO, Yohei ENYA
  • Publication number: 20110309328
    Abstract: Provided is a nitride semiconductor light emitting device including a light emitting layer above a GaN support base with a semipolar surface and allowing for suppression of reduction in luminous efficiency due to misfit dislocations. A nitride semiconductor light emitting device 11 has a support base 13 comprised of a hexagonal gallium nitride, an n-type gallium nitride-based semiconductor layer 15 including an InX1AlY1Ga1-X1-Y1N (0<X1<1, 0<Y1<1, X1+Y1<1) layer 21, a light emitting layer 17, and a p-type gallium nitride-based semiconductor layer 19. This InAlGaN layer 21 is provided between a semipolar primary surface 13a and the light emitting layer 17. Since the bandgap E of the InAlGaN layer 21 is not less than the bandgap E of gallium nitride, a confinement effect of carriers and light in the light emitting layer 17 is provided.
    Type: Application
    Filed: July 22, 2011
    Publication date: December 22, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi KYONO, Yusuke YOSHIZUMI, Yohei ENYA, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO
  • Patent number: 8067257
    Abstract: In the nitride based semiconductor optical device LE1, the strained well layers 21 extend along a reference plane SR1 tilting at a tilt angle ? from the plane that is orthogonal to a reference axis extending in the direction of the c-axis. The tilt angle ? is in the range of greater than 59 degrees to less than 80 degrees or greater than 150 degrees to less than 180 degrees. A gallium nitride based semiconductor layer P is adjacent to a light-emitting layer SP? with a negative piezoelectric field and has a band gap larger than that of a barrier layer. The direction of the piezoelectric field in the well layer W3 is directed in a direction from the n-type layer to the p-type layer, and the piezoelectric field in the gallium nitride based semiconductor layer P is directed in a direction from the p-type layer to the n-type layer. Consequently, the valence band, not the conduction band, has a dip at the interface between the light-emitting layer SP? and the gallium nitride based semiconductor layer P.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: November 29, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Masaki Ueno, Yohei Enya, Takashi Kyono, Katsushi Akita, Yusuke Yoshizumi, Takamichi Sumitomo, Takao Nakamura
  • Patent number: 8053806
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: November 8, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Takashi Kyono, Yusuke Yoshizumi, Yohei Enya, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Takao Nakamura
  • Publication number: 20110241016
    Abstract: A nitride-based semiconductor light-emitting element LE1 or LD1 has: a gallium nitride substrate 11 having a principal surface 11a which makes an angle ?, in the range 40° to 50° or in the range more than 90° to 130°, with the reference plane Sc perpendicular to the reference axis Cx extending in the c axis direction; an n-type gallium nitride-based semiconductor layer 13; a second gallium nitride-based semiconductor layer 17; and a light-emitting layer 15 including a plurality of well layers of InGaN and a plurality of barrier layers 23 of a GaN-based semiconductor, wherein the direction of piezoelectric polarization of the plurality of well layers 21 is the direction from the n-type gallium nitride-based semiconductor layer 13 toward the second gallium nitride-based semiconductor layer 17.
    Type: Application
    Filed: June 18, 2010
    Publication date: October 6, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi Kyono, Yohei Enya, Yusuke Yoshizumi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Masahiro Adachi, Shinji Tokuyama
  • Publication number: 20110227035
    Abstract: Provided is a nitride-based semiconductor light-emitting element having improved carrier injection efficiency into the well layer. The element comprises a substrate (5) formed from a hexagonal-crystal gallium nitride semiconductor; an n-type gallium nitride semiconductor region (7) disposed on a main surface (S1) of the substrate (5); a light-emitting layer (11) having a single quantum well structure disposed on the n-type gallium nitride semiconductor region (7); and a p-type gallium nitride semiconductor region (19) disposed on the light-emitting layer (11). The light-emitting layer (11) is disposed between the n-type gallium nitride semiconductor region (7) and the p-type gallium nitride semiconductor region (19). The light-emitting layer (11) comprises a well layer (15), a barrier layer (13), and a barrier layer (17). The well layer (15) is InGaN.
    Type: Application
    Filed: June 14, 2010
    Publication date: September 22, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi Kyono, Yohei Enya, Yusuke Yoshizumi, Katsushi Akita, Takamichi Sumitomo, Masaki Ueno
  • Publication number: 20110228804
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity of high lasing yield, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Application
    Filed: July 14, 2010
    Publication date: September 22, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Shimpei TAKAGI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Masaki UENO, Takamichi SUMITOMO, Shinji TOKUYAMA, Koji KATAYAMA, Takao NAKAMURA, Takatoshi IKEGAMI
  • Publication number: 20110223701
    Abstract: A group III nitride semiconductor device having a gallium nitride based semiconductor film with an excellent surface morphology is provided. A group III nitride optical semiconductor device 11a includes a group III nitride semiconductor supporting base 13, a GaN based semiconductor region 15, an active layer active layer 17, and a GaN semiconductor region 19. The primary surface 13a of the group III nitride semiconductor supporting base 13 is not any polar plane, and forms a finite angle with a reference plane Sc that is orthogonal to a reference axis Cx extending in the direction of a c-axis of the group III nitride semiconductor. The GaN based semiconductor region 15 is grown on the semipolar primary surface 13a. A GaN based semiconductor layer 21 of the GaN based semiconductor region 15 is, for example, an n-type GaN based semiconductor, and the n-type GaN based semiconductor is doped with silicon.
    Type: Application
    Filed: May 20, 2011
    Publication date: September 15, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takashi KYONO, Yusuke YOSHIZUMI, Yohei ENYA, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Takao NAKAMURA
  • Publication number: 20110210378
    Abstract: A high electron mobility transistor includes a free-standing supporting base having a III nitride region, a first III nitride barrier layer which is provided on the first III nitride barrier layer, a III nitride channel layer which is provided on the first III nitride barrier layer and forms a first heterojunction with the first III nitride barrier layer, a gate electrode provided on the III nitride channel layer so as to exert an electric field on the first heterojunction, a source electrode on the III nitride channel layer and the first III nitride barrier, and a drain electrode on the III nitride channel layer and the first III nitride barrier. The III nitride channel layer has compressive internal strain, and the piezoelectric field of the III nitride channel layer is oriented in the direction from the supporting base towards the first III nitride barrier layer.
    Type: Application
    Filed: July 29, 2010
    Publication date: September 1, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki UENO, Takashi KYONO, Yohei ENYA, Takamichi SUMITOMO, Yusuke YOSHIZUMI
  • Publication number: 20110212560
    Abstract: Provided is a method of fabricating a nitride semiconductor light emitting device, and this method can reduce degradation of a well layer during formation of a p-type gallium nitride based semiconductor region and a barrier layer. After growth of a gallium nitride based semiconductor region 13, a barrier layer 21a is grown on a substrate 11. The barrier layer 21a is formed at a growth temperature TB during a period from a time t1 to t2. The growth temperature TB (=T2) is in the range of not less than 760 Celsius degrees and not more than 800 Celsius degrees. At the time t2, the growth of the barrier layer 21a is completed. After the growth of the barrier layer 21a, a well layer 23a is grown on the substrate 11 without interruption of growth. The well layer 23a is formed at a growth temperature TW (=T2) during a period from the time t2 to t3. The growth temperature TW is the same as the growth temperature TB and can be in the range of not less than 760 Celsius degrees and not more than 800 Celsius degrees.
    Type: Application
    Filed: April 20, 2011
    Publication date: September 1, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Takamichi SUMITOMO, Katsushi AKITA, Takashi KYONO, Yusuke YOSHIZUMI
  • Publication number: 20110180805
    Abstract: A III-nitride semiconductor device has a support base comprised of a III-nitride semiconductor and having a primary surface extending along a first reference plane perpendicular to a reference axis inclined at a predetermined angle ALPHA with respect to the c-axis of the III-nitride semiconductor, and an epitaxial semiconductor region provided on the primary surface of the support base. The epitaxial semiconductor region includes a plurality of GaN-based semiconductor layers. The reference axis is inclined at a first angle ALPHA1 in the range of not less than 10 degrees, and less than 80 degrees from the c-axis of the III-nitride semiconductor toward a first crystal axis, either one of the m-axis and a-axis. The reference axis is inclined at a second angle ALPHA2 in the range of not less than ?0.30 degrees and not more than +0.30 degrees from the c-axis of the III-nitride semiconductor toward a second crystal axis, the other of the m-axis and a-axis.
    Type: Application
    Filed: July 14, 2010
    Publication date: July 28, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei ENYA, Yusuke YOSHIZUMI, Takashi KYONO, Takamichi SUMITOMO, Katsushi AKITA, Masaki UENO, Takao NAKAMURA
  • Publication number: 20110175201
    Abstract: A Group III nitride semiconductor device has a semiconductor region, a metal electrode, and a transition layer. The semiconductor region has a surface comprised of a Group III nitride crystal. The semiconductor region is doped with a p-type dopant. The surface is one of a semipolar surface and a nonpolar surface. The metal electrode is provided on the surface. The transition layer is formed between the Group III nitride crystal of the semiconductor region and the metal electrode. The transition layer is made by interdiffusion of a metal of the metal electrode and a Group III nitride of the semiconductor region.
    Type: Application
    Filed: July 13, 2010
    Publication date: July 21, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Shinji Tokuyama, Masaki Ueno, Masahiro Adachi, Takashi Kyono, Takamichi Sumitomo, Koji Katayama, Yoshihiro Saito
  • Publication number: 20110164637
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Application
    Filed: March 17, 2011
    Publication date: July 7, 2011
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Masahiro ADACHI, Katsushi AKITA, Masaki UENO, Takamichi SUMITOMO, Shinji TOKUYAMA, Koji KATAYAMA, Takao NAKAMURA, Takatoshi IKEGAMI
  • Publication number: 20110158277
    Abstract: A III-nitride semiconductor laser device is provided with a laser structure and an electrode. The laser structure includes a support base which comprises a hexagonal III-nitride semiconductor and has a semipolar primary surface, and a semiconductor region provided on the semipolar primary surface. The electrode is provided on the semiconductor region. The semiconductor region includes a first cladding layer of a first conductivity type GaN-based semiconductor, a second cladding layer of a second conductivity type GaN-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer. The laser structure includes first and second fractured faces intersecting with an m-n plane defined by the m-axis of the hexagonal III-nitride semiconductor and an axis normal to the semipolar primary surface. A laser cavity of the III-nitride semiconductor laser device includes the first and second fractured faces.
    Type: Application
    Filed: July 16, 2010
    Publication date: June 30, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yusuke YOSHIZUMI, Yohei ENYA, Takashi KYONO, Takamichi SUMITOMO, Nobuhiro SAGA, Masahiro ADACHI, Kazuhide SUMIYOSHI, Shinji TOKUYAMA, Shimpei TAKAGI, Takatoshi IKEGAMI, Masaki UENO, Koji KATAYAMA
  • Patent number: 7955881
    Abstract: In the method of fabricating a quantum well structure which includes a well layer and a barrier layer, the well layer is grown at a first temperature on a sapphire substrate. The well layer comprises a group III nitride semiconductor which contains indium as a constituent. An intermediate layer is grown on the InGaN well layer while monotonically increasing the sapphire substrate temperature from the first temperature. The group III nitride semiconductor of the intermediate layer has a band gap energy larger than the band gap energy of the InGaN well layer, and a thickness of the intermediate layer is greater than 1 nm and less than 3 nm in thickness. The barrier layer is grown on the intermediate layer at a second temperature higher than the first temperature. The barrier layer comprising a group III nitride semiconductor and the group III nitride semiconductor of the barrier layer has a band gap energy larger than the band gap energy of the well layer.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: June 7, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Katsushi Akita, Takamichi Sumitomo, Yohei Enya, Takashi Kyono, Masaki Ueno
  • Publication number: 20110121265
    Abstract: A group III nitride semiconductor optical device 11a has a group III nitride semiconductor substrate 13 having a main surface 13a forming a finite angle with a reference plane Sc orthogonal to a reference axis Cx extending in a c-axis direction of the group III nitride semiconductor and an active layer 17 of a quantum-well structure, disposed on the main surface 13a of the group III nitride semiconductor substrate 13, including a well layer 28 made of a group III nitride semiconductor and a plurality of barrier layers 29 made of a group III nitride semiconductor. The main surface 13a exhibits semipolarity. The active layer 17 has an oxygen content of at least 1×1017 cm?3 but not exceeding 8×1017 cm?3. The plurality of barrier layers 29 contain an n-type impurity other than oxygen by at least 1×1017 cm?3 but not exceeding 1×1019 cm?3 in an upper near-interface area 29u in contact with a lower interface 28Sd of the well layer 28 on the group III nitride semiconductor substrate side.
    Type: Application
    Filed: February 26, 2010
    Publication date: May 26, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Masaki Ueno, Yusuke Yoshizumi, Yohei Enya, Takashi Kyono, Katsushi Akita, Takamichi Sumitomo, Masahiro Adachi, Shinji Tokuyama
  • Publication number: 20110124142
    Abstract: In a GaN based semiconductor optical device 11a, the primary surface 13a of the substrate 13 tilts at a tilting angle toward an m-axis direction of the first GaN based semiconductor with respect to a reference axis “Cx” extending in a direction of a c-axis of the first GaN based semiconductor, and the tilting angle is 63 degrees or more, and is less than 80 degrees. The GaN based semiconductor epitaxial region 15 is provided on the primary surface 13a. On the GaN based semiconductor epitaxial region 15, an active layer 17 is provided. The active layer 17 includes one semiconductor epitaxial layer 19. The semiconductor epitaxial layer 19 is composed of InGaN. The thickness direction of the semiconductor epitaxial layer 19 tilts with respect to the reference axis “Cx.” The reference axis “Cx” extends in the direction of the [0001] axis. This structure provides the GaN based semiconductor optical device that can reduces decrease in light emission characteristics due to the indium segregation.
    Type: Application
    Filed: February 1, 2011
    Publication date: May 26, 2011
    Applicant: SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Yohei Enya, Yusuke Yoshizumi, Masaki Ueno, Katsushi Akita, Takashi Kyono, Takamichi Sumitomo, Takao Nakamura
  • Patent number: 7933303
    Abstract: Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: April 26, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Yohei Enya, Takashi Kyono, Masahiro Adachi, Katsushi Akita, Masaki Ueno, Takamichi Sumitomo, Shinji Tokuyama, Koji Katayama, Takao Nakamura, Takatoshi Ikegami