Patents by Inventor Takashi Mani

Takashi Mani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10151275
    Abstract: A snap-fit attaching device may attach an accessory device to an attachment unit that may be integrated with or connected to a main unit. The attachment device may include a first structural member and a second structural member. The first structural member includes a slot that defines an engaging opening forming member. The engaging opening forming member is supported at a support portion in a cantilever manner so as to be resiliently deformable. An engaging opening is formed in the engaging opening forming member. The first structural member further includes a bridging member defining a part of the slot and disposed at a position opposite to the support portion. The second structural member includes an engaging projection for engagement with the engaging opening.
    Type: Grant
    Filed: December 30, 2017
    Date of Patent: December 11, 2018
    Assignee: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Takashi Mani, Wenbin Yang
  • Publication number: 20180195468
    Abstract: A snap-fit attaching device may attach an accessory device to an attachment unit that may be integrated with or connected to a main unit. The attachment device may include a first structural member and a second structural member. The first structural member includes a slot that defines an engaging opening forming member. The engaging opening forming member is supported at a support portion in a cantilever manner so as to be resiliently deformable. An engaging opening is formed in the engaging opening forming member. The first structural member further includes a bridging member defining a part of the slot and disposed at a position opposite to the support portion. The second structural member includes an engaging projection for engagement with the engaging opening.
    Type: Application
    Filed: December 30, 2017
    Publication date: July 12, 2018
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Takashi MANI, Wenbin YANG
  • Patent number: 9567947
    Abstract: A vaporized fuel processing apparatus for a vehicle having a fuel tank has a casing filled with an adsorbent and having a first outer surface. The casing has first ribs protruding from the first outer surface and extending without intersecting with each other. The casing has at least one second rib protruding from the first outer surface. At least one pair of the first ribs adjacent to each other are connected with each other via one of the second ribs only. The other pairs of the first ribs adjacent to each other are connected with each other via one of the second ribs only or are not connected with each other via any one of the second ribs.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: February 14, 2017
    Assignee: AISIN KOGYO KABUSHIKI KAISHA
    Inventor: Takashi Mani
  • Publication number: 20160243524
    Abstract: An adsorbent includes three or more columnar portions. The three or more columnar portions are joined to each other at their lateral sides with their axial directions extending parallel to each other such that a hollow space having opposite axial open ends and a closed lateral side closed by the lateral sides of the three or more columnar portions is defined between the three or more columnar portions.
    Type: Application
    Filed: January 29, 2016
    Publication date: August 25, 2016
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventor: Takashi MANI
  • Patent number: 9328700
    Abstract: A fuel vapor processing apparatus including: a passage for fluid; a tank port and a purge port formed on one end side of the passage; an atmospheric air port formed on the other end side; and four or more adsorption layers filled with a fuel adsorbing material, wherein the main adsorption layer, and a region provided on the atmospheric air port side of the main adsorption layer are provided; the adsorption layers other than the main adsorption layer, and separation parts which separate the adjacent adsorption layers are provided in the region, and in the at least two separation parts inside the region, when the cross-sectional area of each of the at least two separation parts perpendicular to a flow direction of the passage is converted into a circular cross-sectional area, a distance between the adjacent adsorption layers is larger than the mean value of diameters of the each separation part.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: May 3, 2016
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventor: Takashi Mani
  • Publication number: 20160040631
    Abstract: A vaporized fuel processing apparatus for a vehicle having a fuel tank has a casing filled with an adsorbent and having a first outer surface. The casing has first ribs protruding from the first outer surface and extending without intersecting with each other. The casing has at least one second rib protruding from the first outer surface. At least one pair of the first ribs adjacent to each other are connected with each other via one of the second ribs only. The other pairs of the first ribs adjacent to each other are connected with each other via one of the second ribs only or are not connected with each other via any one of the second ribs.
    Type: Application
    Filed: August 7, 2015
    Publication date: February 11, 2016
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventor: Takashi MANI
  • Patent number: 9005352
    Abstract: Embodiments of the invention are directed towards a trap canister for adsorbing fuel vapor contained in breakthrough gas discharged from a main adsorbent canister. The main adsorbent canister is connected to a fuel tank has a case defining an adsorption chamber therein and an adsorbent filled in the adsorption chamber. The case has a first end open to the atmosphere and a second end for introducing breakthrough gas into the adsorption chamber. The adsorbent filled in the adsorption chamber adsorbs the fuel vapor contained in the breakthrough gas. The trap canister further has a bypass path for bypassing the adsorption chamber and a valve configured to block the bypass path and to allow for opening during refueling. This prevents the fuel vapor from flowing into the atmosphere during normal operation while also decreasing pressure loss during refueling.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 14, 2015
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Takashi Mani, Ryuji Kosugi
  • Patent number: 9005350
    Abstract: A trap canister for adsorbing fuel vapor contained in break-through gas discharged from a main canister. The trap canister may include a trap case having an adsorption chamber defined therein and containing an adsorption material, so that the break-through gas flows through the adsorption material in a gas flow direction. The adsorption chamber may include a gas introduction side and a gas outlet side located on a downstream side of the gas introduction side along the gas flow direction. The adsorption chamber may have a passage with a cross-sectional area gradually decreasing from the gas introduction side toward the gas outlet side. The trap canister may further include a temperature control device configured to control the temperature of the adsorption material.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: April 14, 2015
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventor: Takashi Mani
  • Patent number: 8992673
    Abstract: In an evaporated fuel treatment apparatus, for reducing blow-by of an evaporated fuel component to the outside, the evaporated fuel treatment apparatus includes at least one adsorption chamber filled with a first adsorbent and a second adsorbent that adsorb and desorb a fuel component of evaporated fuel, and the first adsorbent has a higher pore volume than the second adsorbent with respect to effective pores that effectively adsorb and desorb a low-boiling fuel component, and the first adsorbent has a lower pore volume than the second adsorbent with respect to pores smaller than the effective pores and having higher adsorbability and lower desorbability on butane than the effective pores.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: March 31, 2015
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventor: Takashi Mani
  • Publication number: 20140352542
    Abstract: A fuel vapor processing apparatus including: a passage for fluid; a tank port and a purge port formed on one end side of the passage; an atmospheric air port formed on the other end side; and four or more adsorption layers filled with a fuel adsorbing material, wherein the main adsorption layer, and a region provided on the atmospheric air port side of the main adsorption layer are provided; the adsorption layers other than the main adsorption layer, and separation parts which separate the adjacent adsorption layers are provided in the region, and in the at least two separation parts inside the region, when the cross-sectional area of each of the at least two separation parts perpendicular to a flow direction of the passage is converted into a circular cross-sectional area, a distance between the adjacent adsorption layers is larger than the mean value of diameters of the each separation part.
    Type: Application
    Filed: May 20, 2014
    Publication date: December 4, 2014
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventor: Takashi Mani
  • Patent number: 8900350
    Abstract: One aspect of the present teachings includes a separation membrane arranged in a hollow case. A particular component concentration chamber and a particular component dilution chamber are arranged in series in the hollow case. The particular component concentration chamber is capable of increasing concentration of the particular component by allowing permeation of the particular gas through the separation membrane. The particular component dilution chamber is capable of increasing concentration of the particular component by not allowing permeation of the particular gas through the separation membrane. The particular component concentration chamber and the particular component dilution chamber are configured such that only a gas containing the particular component and permeated through the separation membrane or only a gas containing the particular component not permeated through the separation membrane in one of the chambers disposed on an upstream side (i.e.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: December 2, 2014
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Masataka Suzuki, Takashi Suefuji, Akio Muraishi, Katsuhiko Makino, Toshiyuki Iwasaki, Takashi Mani
  • Patent number: 8602004
    Abstract: According to the present teaching, a fuel vapor processing apparatus includes a fuel tank, a canister capable of adsorbing fuel vapor produced in the fuel tank, a fuel pump disposed within the fuel tank, a fuel recovery device configured to recover the fuel vapor from the canister into the fuel tank, and a control device configured to stop recovery of the fuel vapor by the fuel recovery device based on at least one of parameters representing the amount of the fuel vapor remaining within the canister.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: December 10, 2013
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Tamotsu Ogita, Takashi Mani
  • Publication number: 20130263741
    Abstract: Embodiments of the invention are directed towards a trap canister for adsorbing fuel vapor contained in breakthrough gas discharged from a main adsorbent canister. The main adsorbent canister is connected to a fuel tank has a case defining an adsorption chamber therein and an adsorbent filled in the adsorption chamber. The case has a first end open to the atmosphere and a second end for introducing breakthrough gas into the adsorption chamber. The adsorbent filled in the adsorption chamber adsorbs the fuel vapor contained in the breakthrough gas. The trap canister further has a bypass path for bypassing the adsorption chamber and a valve configured to block the bypass path and to allow for opening during refueling. This prevents the fuel vapor from flowing into the atmosphere during normal operation while also decreasing pressure loss during refueling.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 10, 2013
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventors: Takashi MANI, Ryuji KOSUGI
  • Publication number: 20130263740
    Abstract: A trap canister for adsorbing fuel vapor contained in break-through gas discharged from a main canister. The trap canister may include a trap case having an adsorption chamber defined therein and containing an adsorption material, so that the break-through gas flows through the adsorption material in a gas flow direction. The adsorption chamber may include a gas introduction side and a gas outlet side located on a downstream side of the gas introduction side along the gas flow direction. The adsorption chamber may have a passage with a cross-sectional area gradually decreasing from the gas introduction side toward the gas outlet side. The trap canister may further include a temperature control device configured to control the temperature of the adsorption material.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 10, 2013
    Applicant: AISAN KOGYO KABUSHIKI KAISHA
    Inventor: Takashi MANI
  • Patent number: 8544451
    Abstract: According to the present teaching, a fuel vapor processing apparatus includes a fuel tank, a canister capable of adsorbing fuel vapor produced in the fuel tank, a fuel pump disposed within the fuel tank, a fuel recovery device configured to recover the fuel vapor from the canister into the fuel tank, and a control device configured to stop recovery of the fuel vapor by the fuel recovery device based on at least one of parameters representing the amount of the fuel vapor remaining within the canister.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: October 1, 2013
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Tamotsu Ogita, Takashi Mani
  • Patent number: 8474439
    Abstract: A fuel vapor processor has a fuel tank, a canister, a recovery pipe, a fuel pump, a negative pressure generator, a pressure regulator, a fuel intake pipe and a fuel intake regulator. The vapor pipe leads the fuel vapor generated in the fuel tank into the canister for trapping the fuel vapor. The recovery pipe connects the fuel tank and the canister for recovering the fuel vapor trapped in the canister into the fuel tank. The fuel intake pipe directly connects the fuel pump provided in the fuel tank with the negative pressure generator for leading fuel to the negative pressure generator. The negative pressure generator generates negative pressure depending on an amount of fuel supplied to the negative pressure generator from the fuel pump. The fuel vapor trapped in the canister is recovered to the fuel tank through the recovery pipe due to the negative pressure. The pressure regulator is connected with the fuel pump for returning excess fuel discharged from the fuel pump into the fuel tank.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: July 2, 2013
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Katsuhiko Makino, Junya Kimoto, Masanobu Shinagawa, Takashi Mani, Masakazu Hasegawa
  • Publication number: 20130125755
    Abstract: One aspect of the present teachings includes a separation membrane arranged in a hollow case. A particular component concentration chamber and a particular component dilution chamber are arranged in series in the hollow case. The particular component concentration chamber is capable of increasing concentration of the particular component by allowing permeation of the particular gas through the separation membrane. The particular component dilution chamber is capable of increasing concentration of the particular component by not allowing permeation of the particular gas through the separation membrane. The particular component concentration chamber and the particular component dilution chamber are configured such that only a gas containing the particular component and permeated through the separation membrane or only a gas containing the particular component not permeated through the separation membrane in one of the chambers disposed on an upstream side (i.e.
    Type: Application
    Filed: January 17, 2013
    Publication date: May 23, 2013
    Inventors: Masataka SUZUKI, Takashi SUEFUJI, Akio MURAISHI, Katsuhiko MAKINO, Toshiyuki IWASAKI, Takashi MANI
  • Patent number: 8388743
    Abstract: One aspect of the present teachings includes a separation membrane arranged in a hollow case. A particular component concentration chamber and a particular component dilution chamber are arranged in series in the hollow case. The particular component concentration chamber is capable of increasing concentration of the particular component by allowing permeation of the particular gas through the separation membrane. The particular component dilution chamber is capable of increasing concentration of the particular component by not allowing permeation of the particular gas through the separation membrane. The particular component concentration chamber and the particular component dilution chamber are configured such that only a gas containing the particular component and permeated through the separation membrane or only a gas containing the particular component not permeated through the separation membrane in one of the chambers disposed on an upstream side (i.e.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: March 5, 2013
    Assignee: Aisan Kogyo Kabyshiki Kaisha
    Inventors: Masataka Suzuki, Takashi Suefuji, Akio Muraishi, Katsuhiko Makino, Toshiyuki Iwasaki, Takashi Mani
  • Patent number: 8347691
    Abstract: An apparatus for checking leakage from a fuel vapor processing apparatus includes an interrupting device capable of interrupting communication between a canister and a fuel tank when a pressure within the canister is negative and a pressure within the fuel tank is positive. A first pressure detecting device can detect the pressure within the canister or its equivalent. A second pressure detecting device can detect the pressure within the fuel tank or its equivalent.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: January 8, 2013
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Katsuhiko Makino, Junya Kimoto, Takashi Mani, Masaki Ikeya
  • Patent number: 8327830
    Abstract: A fuel vapor processing apparatus includes a purge air supply device including separation device that can separate gas, which is introduced from within a fuel tank, into a fuel component and an air component. The air component is supplied into a canister for purging the canister.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: December 11, 2012
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Katsuhiko Makino, Junya Kimoto, Masanobu Shinagawa, Takashi Mani