Patents by Inventor Takayuki Aoyama

Takayuki Aoyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10446397
    Abstract: When an insulated gate bipolar transistor is incorporated in a drive circuit of a flash lamp, so that a light emission pattern of the flash lamp is freely defined, a temperature change pattern of a surface of a semiconductor wafer that receives the emission of flash light can be adjusted. The length of diffusion of impurities can be controlled by rising a surface temperature of the semiconductor wafer from a preheating temperature to a diffusion temperature through emission of flash light and maintaining the surface temperature at the diffusion temperature for a time period not shorter than 1 millisecond and not longer than 10 milliseconds. Subsequently, the impurities can be activated by rising the surface temperature of the semiconductor wafer from the diffusion temperature to an activation temperature.
    Type: Grant
    Filed: October 19, 2016
    Date of Patent: October 15, 2019
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Hikaru Kawarazaki
  • Publication number: 20190311924
    Abstract: Over a front surface of a silicon semiconductor wafer is deposited a high dielectric constant film with a silicon oxide film, serving as an interface layer, provided between the semiconductor wafer and the high dielectric constant film. After a chamber houses the semiconductor wafer, a chamber's pressure is reduced to be lower than atmospheric pressure. Subsequently, a gaseous mixture of ammonia and nitrogen gas is supplied into the chamber to return the pressure to ordinary pressure, and the front surface is irradiated with a flash light, thereby performing post deposition annealing (PDA) on the high dielectric constant film. Since the pressure is reduced once to be lower than atmospheric pressure and then returned to ordinary pressure, a chamber's oxygen concentration is lowered remarkably during the PDA. This restricts an increase in thickness of the silicon oxide film underlying the high dielectric constant film by oxygen taken in during the PDA.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Inventors: Takayuki AOYAMA, Hikaru KAWARAZAKI, Masashi FURUKAWA, Shinichi KATO, Kazuhiko FUSE, Hideaki TANIMURA
  • Patent number: 10424483
    Abstract: A metal film is deposited on a front surface of a semiconductor wafer of silicon. After the semiconductor wafer is received in a chamber, the pressure in the chamber is reduced to a pressure lower than atmospheric pressure. Thereafter, nitrogen gas is supplied into the chamber to return the pressure in the chamber to ordinary pressure, and the front surface of the semiconductor wafer is irradiated with a flash of light, so that a silicide that is a compound of the metal film and silicon is formed. The oxygen concentration in the chamber is significantly lowered during the formation of the silicide because the pressure in the chamber is reduced once to the pressure lower than atmospheric pressure and then returned to the ordinary pressure. This suppresses the increase in resistance of the silicide resulting from the entry of oxygen in the atmosphere in the chamber into defects near the interface between the metal film and a base material.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: September 24, 2019
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Hikaru Kawarazaki, Masashi Furukawa, Kazuhiko Fuse, Hideaki Tanimura, Shinichi Kato
  • Publication number: 20190267262
    Abstract: When pressure in a chamber is brought to atmospheric pressure and the chamber is filled with an inert gas atmosphere, the atmosphere in the chamber is sucked into an oxygen concentration analyzer through a sampling line such that oxygen concentration in the chamber is measured by the oxygen concentration analyzer. When the pressure in the chamber is reduced to less than atmospheric pressure, nitrogen gas is supplied to the oxygen concentration analyzer through an inert gas supply line simultaneously with suspending the measurement of oxygen concentration in the chamber. Even when the measurement of oxygen concentration in the chamber is suspended, reverse flow to the oxygen concentration analyzer from a gas exhaust pipe can be prevented, and the oxygen concentration analyzer can be prevented from being exposed to exhaust from the chamber. The configuration results in maintaining measurement accuracy of the oxygen concentration analyzer in a low oxygen concentration range.
    Type: Application
    Filed: January 24, 2019
    Publication date: August 29, 2019
    Inventors: Takayuki AOYAMA, Akitsugu UEDA, Mao OMORI, Kazunori AMAGO
  • Publication number: 20190164789
    Abstract: A semiconductor wafer to be treated is heated at a first preheating temperature ranging from 100 to 200° C. while a pressure in a chamber housing the semiconductor wafer is reduced to a pressure lower than an atmospheric pressure. After the semiconductor wafer is preheated to increase the temperature into a second preheating temperature ranging from 500 to 700° C. while the pressure in the chamber is restored to a pressure higher than the reduced pressure, a flash lamp emits a flashlight to a surface of the semiconductor wafer. Heating the semiconductor wafer at the first preheating temperature that is a relatively low temperature enables, for example, the moisture absorbed on the surface of the semiconductor wafer in trace amounts to be desorbed from the surface, and also enables the flash heating treatment to be performed with oxygen derived from such absorption removed as much as possible.
    Type: Application
    Filed: April 4, 2017
    Publication date: May 30, 2019
    Inventors: Takayuki AOYAMA, Shinichi KATO, Kazuhiko FUSE, Hikaru KAWARAZAKI, Masashi FURUKAWA, Hideaki TANIMURA, Akitsugu UEDA
  • Publication number: 20190109007
    Abstract: A metal film is deposited on a front surface of a semiconductor wafer of silicon. After the semiconductor wafer is received in a chamber, the pressure in the chamber is reduced to a pressure lower than atmospheric pressure. Thereafter, nitrogen gas is supplied into the chamber to return the pressure in the chamber to ordinary pressure, and the front surface of the semiconductor wafer is irradiated with a flash of light, so that a silicide that is a compound of the metal film and silicon is formed. The oxygen concentration in the chamber is significantly lowered during the formation of the silicide because the pressure in the chamber is reduced once to the pressure lower than atmospheric pressure and then returned to the ordinary pressure. This suppresses the increase in resistance of the silicide resulting from the entry of oxygen in the atmosphere in the chamber into defects near the interface between the metal film and a base material.
    Type: Application
    Filed: December 3, 2018
    Publication date: April 11, 2019
    Inventors: Takayuki AOYAMA, Hikaru KAWARAZAKI, Masashi FURUKAWA, Kazuhiko FUSE, Hideaki TANIMURA, Shinichi KATO
  • Publication number: 20190027385
    Abstract: Over a front surface of a silicon semiconductor wafer is deposited a high dielectric constant film with a silicon oxide film, serving as an interface layer, provided between the semiconductor wafer and the high dielectric constant film. After a chamber houses the semiconductor wafer, a chamber's pressure is reduced to be lower than atmospheric pressure. Subsequently, a gaseous mixture of ammonia and nitrogen gas is supplied into the chamber to return the pressure to ordinary pressure, and the front surface is irradiated with a flash light, thereby performing post deposition annealing (PDA) on the high dielectric constant film. Since the pressure is reduced once to be lower than atmospheric pressure and then returned to ordinary pressure, a chamber's oxygen concentration is lowered remarkably during the PDA. This restricts an increase in thickness of the silicon oxide film underlying the high dielectric constant film by oxygen taken in during the PDA.
    Type: Application
    Filed: September 27, 2018
    Publication date: January 24, 2019
    Inventors: Takayuki AOYAMA, Hikaru KAWARAZAKI, Masashi FURUKAWA, Shinichi KATO, Kazuhiko FUSE, Hideaki TANIMURA
  • Patent number: 10181404
    Abstract: A metal film is deposited on a front surface of a semiconductor wafer of silicon. After the semiconductor wafer is received in a chamber, the pressure in the chamber is reduced to a pressure lower than atmospheric pressure. Thereafter, nitrogen gas is supplied into the chamber to return the pressure in the chamber to ordinary pressure, and the front surface of the semiconductor wafer is irradiated with a flash of light, so that a silicide that is a compound of the metal film and silicon is formed. The oxygen concentration in the chamber is significantly lowered during the formation of the silicide because the pressure in the chamber is reduced once to the pressure lower than atmospheric pressure and then returned to the ordinary pressure. This suppresses the increase in resistance of the silicide resulting from the entry of oxygen in the atmosphere in the chamber into defects near the interface between the metal film and a base material.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: January 15, 2019
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Hikaru Kawarazaki, Masashi Furukawa, Kazuhiko Fuse, Hideaki Tanimura, Shinichi Kato
  • Publication number: 20190006215
    Abstract: A semiconductor wafer transport mode of a heat treatment apparatus is switchable between two modes of a “high throughput mode” and a “low oxygen concentration mode” as appropriate. In the “low oxygen concentration mode”, a first cooling chamber is used only as a path for transferring the semiconductor wafer, and a second cooling chamber is used only as a dedicated cooling unit for cooling the semiconductor wafer subjected to flash heating. On the other hand, in the “high throughput mode”, both of the first cooling chamber and the second cooling chamber are used as paths for transferring the semiconductor wafer, and as the cooling units, too.
    Type: Application
    Filed: June 25, 2018
    Publication date: January 3, 2019
    Inventors: Takayuki AOYAMA, Shinichi IKEDA, Akitsugu UEDA
  • Patent number: 10121683
    Abstract: Over a front surface of a silicon semiconductor wafer is deposited a high dielectric constant film with a silicon oxide film, serving as an interface layer, provided between the semiconductor wafer and the high dielectric constant film. After a chamber houses the semiconductor wafer, a chamber's pressure is reduced to be lower than atmospheric pressure. Subsequently, a gaseous mixture of ammonia and nitrogen gas is supplied into the chamber to return the pressure to ordinary pressure, and the front surface is irradiated with a flash light, thereby performing post deposition annealing (PDA) on the high dielectric constant film. Since the pressure is reduced once to be lower than atmospheric pressure and then returned to ordinary pressure, a chamber's oxygen concentration is lowered remarkably during the PDA. This restricts an increase in thickness of the silicon oxide film underlying the high dielectric constant film by oxygen taken in during the PDA.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: November 6, 2018
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Hikaru Kawarazaki, Masashi Furukawa, Shinichi Kato, Kazuhiko Fuse, Hideaki Tanimura
  • Publication number: 20180259038
    Abstract: A degree of freedom of a hypoid gear is improved. An instantaneous axis in a relative rotation of a gear axis and a pinion axis, a line of centers, an intersection between the instantaneous axis and the line of centers, and an inclination angle of the instantaneous axis with respect to the rotation axis of the gear are calculated based on a shaft angle, an offset, and a gear ratio of a hypoid gear. Based on these variables, base coordinate systems are determined, and the specifications are calculated using these coordinate systems. For the spiral angles, pitch cone angles, and reference circle radii of the gear and pinion, one of the values for the gear and the pinion is set and a design reference point is calculated. Based on the design reference point and a contact normal of the gear, specifications are calculated. The pitch cone angle of the gear or the pinion can be freely selected.
    Type: Application
    Filed: May 15, 2018
    Publication date: September 13, 2018
    Applicants: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Takayuki AOYAMA, Mizuho INAGAKI, Kiyokazu SUNAMI, Sho HONDA, Yoshikatsu SHIBATA, Hiromi MIYAMURA
  • Patent number: 10028336
    Abstract: Flash light is emitted from flash lamps to the surface of a semiconductor substrate on which a metal layer has been formed for one second or less to momentarily raise temperature on the surface of the semiconductor substrate including the metal layer and an impurity region to a processing temperature of 1000° C. or more. Heat treatment is performed by emitting flash light to the surface of the semiconductor substrate in a forming gas atmosphere containing hydrogen. By heating the surface of the semiconductor substrate to a high temperature in the forming gas atmosphere for an extremely short time period, contact resistance can be reduced without desorbing hydrogen taken in the vicinity of an interface of a gate oxide film for hydrogen termination.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: July 17, 2018
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Shinichi Kato
  • Publication number: 20180144939
    Abstract: A PSG film, which is a silicon dioxide thin film containing phosphorus as a dopant, is formed on the surface of a semiconductor wafer. The semiconductor wafer having the PSG film formed thereon is kept at a predetermined heating temperature by light radiation from halogen lamps in the atmosphere containing hydrogen for 1 second or longer, so that the dopant is diffused from the PSG film into the surface of the semiconductor wafer. In addition, the flashing light is radiated to the semiconductor wafer for the radiation time shorter than 1 second to heat the surface of the semiconductor wafer to the target temperature so as to activate the dopant. When the PSG film is heated in the atmosphere containing hydrogen, a diffusion coefficient of the dopant contained in the PSG film becomes high; therefore, the dopant can be efficiently diffused from the PSG film into the semiconductor wafer.
    Type: Application
    Filed: November 16, 2017
    Publication date: May 24, 2018
    Inventors: Hideaki TANIMURA, Takayuki Aoyama, Kazuhiko Fuse, Takahiro Yamada
  • Publication number: 20180012767
    Abstract: A semiconductor wafer serving as a treatment target has a stack structure in which a high-dielectric-constant gate insulating film is formed on a silicon base material with an interface layer film of silicon dioxide sandwiched therebetween, and a metal gate electrode containing fluorine is further formed thereon. A heat treatment apparatus radiates flash light from a flash lamp to the semiconductor wafer in an atmosphere containing hydrogen to carry out heating treatment for an extremely short period of time of 100 milliseconds or less. As a result, diffusion of nitrogen contained in the metal gate electrode is inhibited, at the same time, only the fluorine is diffused from the high-dielectric-constant gate insulating film to an interface between the interface layer film and the silicon base material to reduce an interface state, and reliability of the gate stack structure can be improved.
    Type: Application
    Filed: July 5, 2017
    Publication date: January 11, 2018
    Inventor: Takayuki AOYAMA
  • Publication number: 20180005848
    Abstract: A heat treatment apparatus is provided with two cool chambers, that is, a first cool chamber and a second cool chamber. A semiconductor wafer before treatment is alternately carried into the first cool chamber or the second cool chamber and then transported to a heat treatment part by a transport robot after a nitrogen purge is performed. The semiconductor wafer after being heat-treated in the heat treatment part is alternately transported to the first cool chamber or the second cool chamber to be cooled. A sufficient cooling time is secured for the independent semiconductor wafer, and a reduction in throughput as the whole heat treatment apparatus can be suppressed.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 4, 2018
    Inventors: TAKAYUKI AOYAMA, YASUAKI KONDO, SHINJI MIYAWAKI, SHINICHI KATO, KAZUHIKO FUSE, HIDEAKI TANIMURA, AKITSUGU UEDA, HIKARU KAWARAZAKI, MASASHI FURUKAWA
  • Publication number: 20170347398
    Abstract: Flash light is emitted from flash lamps to the surface of a semiconductor substrate on which a metal layer has been formed for one second or less to momentarily raise temperature on the surface of the semiconductor substrate including the metal layer and an impurity region to a processing temperature of 1000° C. or more. Heat treatment is performed by emitting flash light to the surface of the semiconductor substrate in a forming gas atmosphere containing hydrogen. By heating the surface of the semiconductor substrate to a high temperature in the forming gas atmosphere for an extremely short time period, contact resistance can be reduced without desorbing hydrogen taken in the vicinity of an interface of a gate oxide film for hydrogen termination.
    Type: Application
    Filed: August 17, 2017
    Publication date: November 30, 2017
    Inventors: Takayuki AOYAMA, Shinichi KATO
  • Publication number: 20170309489
    Abstract: A metal film is deposited on a front surface of a semiconductor wafer of silicon. After the semiconductor wafer is received in a chamber, the pressure in the chamber is reduced to a pressure lower than atmospheric pressure. Thereafter, nitrogen gas is supplied into the chamber to return the pressure in the chamber to ordinary pressure, and the front surface of the semiconductor wafer is irradiated with a flash of light, so that a silicide that is a compound of the metal film and silicon is formed. The oxygen concentration in the chamber is significantly lowered during the formation of the silicide because the pressure in the chamber is reduced once to the pressure lower than atmospheric pressure and then returned to the ordinary pressure. This suppresses the increase in resistance of the silicide resulting from the entry of oxygen in the atmosphere in the chamber into defects near the interface between the metal film and a base material.
    Type: Application
    Filed: July 13, 2017
    Publication date: October 26, 2017
    Inventors: Takayuki AOYAMA, Hikaru KAWARAZAKI, Masashi FURUKAWA, Kazuhiko FUSE, Hideaki TANIMURA, Shinichi KATO
  • Patent number: 9769880
    Abstract: Flash light is emitted from flash lamps to the surface of a semiconductor substrate on which a metal layer has been formed for one second or less to momentarily raise temperature on the surface of the semiconductor substrate including the metal layer and an impurity region to a processing temperature of 1000° C. or more. Heat treatment is performed by emitting flash light to the surface of the semiconductor substrate in a forming gas atmosphere containing hydrogen. By heating the surface of the semiconductor substrate to a high temperature in the forming gas atmosphere for an extremely short time period, contact resistance can be reduced without desorbing hydrogen taken in the vicinity of an interface of a gate oxide film for hydrogen termination.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: September 19, 2017
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Shinichi Kato
  • Patent number: 9741576
    Abstract: A metal film is deposited on a front surface of a semiconductor wafer of silicon. After the semiconductor wafer is received in a chamber, the pressure in the chamber is reduced to a pressure lower than atmospheric pressure. Thereafter, nitrogen gas is supplied into the chamber to return the pressure in the chamber to ordinary pressure, and the front surface of the semiconductor wafer is irradiated with a flash of light, so that a silicide that is a compound of the metal film and silicon is formed. The oxygen concentration in the chamber is significantly lowered during the formation of the silicide because the pressure in the chamber is reduced once to the pressure lower than atmospheric pressure and then returned to the ordinary pressure. This suppresses the increase in resistance of the silicide resulting from the entry of oxygen in the atmosphere in the chamber into defects near the interface between the metal film and a base material.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: August 22, 2017
    Assignee: SCREEN Holdings Co., Ltd.
    Inventors: Takayuki Aoyama, Hikaru Kawarazaki, Masashi Furukawa, Kazuhiko Fuse, Hideaki Tanimura, Shinichi Kato
  • Publication number: 20170170039
    Abstract: An oxygen concentration measuring chamber is provided on a wall surface of a chamber in which flash lamp annealing is performed, and a zirconia type oxygen analyzer is provided in the oxygen concentration measuring chamber. An opening for bringing the interior space of the oxygen concentration measuring chamber and a heat treatment space of the chamber into communication with each other therethrough is opened and closed by a gate valve. The opening is closed when the pressure in the chamber is reduced during the treatment. When the pressure in the chamber is reduced to a predetermined pressure to enter a stable state, the gate valve opens the opening, so that gas molecules in the chamber are diffused into the oxygen concentration measuring chamber, and the oxygen analyzer measures the concentration of oxygen in the atmosphere in the chamber. A reference gas for use in the measurement has an oxygen concentration of 1 to 100 ppm.
    Type: Application
    Filed: November 22, 2016
    Publication date: June 15, 2017
    Inventors: Takayuki AOYAMA, Masashi FURUKAWA