Patents by Inventor Takayuki Matsushima

Takayuki Matsushima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10524357
    Abstract: A method for producing a flexible mounting substrate. The method comprises preparing a flexible substrate having a mounting region for mounting an electronic component on an arrangement surface of the flexible substrate, the electronic component including at least one bump, arranging a thermosetting anisotropic conductive film having conductive particles on the mounting region, arranging the electronic component on the anisotropic conductive film, and pressing the electronic component while heating to electrically connect the at least one bump of the electronic component to the mounting region of the flexible substrate, and adhering an adhesion film having an adhesive layer including an adhesive and a base film laminated together on a support surface that is opposite to the arrangement surface of the flexible substrate at least at a portion located on a back surface side of the mounting region before electrically connecting the electronic component and the mounting region.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: December 31, 2019
    Assignee: DEXERIALS CORPORATION
    Inventor: Takayuki Matsushima
  • Patent number: 10306772
    Abstract: An adhesive film including a substrate film and an adhesive agent layer formed thereon is adhered to the back surface side of a mounting region of a flexible substrate, and an electronic component is mounted on the front surface side. An adhesive agent in the adhesive agent layer contains silica fine particles having a primary particle diameter of less than 100 nm, and the adhesive agent layer has a shear storage elastic modulus at 160° C. of 0.15 MPa or more. When the anisotropic conductive film is disposed on the mounting region and the electronic component is mounted on the anisotropic conductive film by heating and pressing, the adhesive agent is not pushed out to a large extent, and conductive particles sandwiched between a bump on the electronic component and the electrode are pressed and squashed, improving an electrical connection between the electronic component and the electrode.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: May 28, 2019
    Assignee: DEXERIALS CORPORATION
    Inventor: Takayuki Matsushima
  • Patent number: 9926475
    Abstract: The invention provides a resin composition capable of achieving excellent chromaticity and a sufficient degree of cure, an adhesive tape, and a method for producing an adhesive tape. The adhesive tape has at least one layer formed by making a resin composition undergo a polymerization reaction, the adhesive composition including: an acrylic monomer; a photopolymerization initiator; and a coloring agent which has a mean volume particle diameter of not less than 1 ?m and not more than 20 ?m and in which a pigment is encapsulated in a resin, in which the coloring agent is contained so that the pigment content is not less than 0.25 wt % and not more than 1.0 wt %. This allows aggregation of the coloring agent to be prevented and inhibition of the polymerization reaction to be prevented, and therefore, excellent chromaticity and a sufficient degree of cure can be achieved.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: March 27, 2018
    Assignee: DEXERIALS CORPORATION
    Inventors: Daisuke Masuko, Takayuki Matsushima
  • Publication number: 20180020537
    Abstract: A method for producing a flexible mounting substrate. The method comprises preparing a flexible substrate having a mounting region for mounting an electronic component on an arrangement surface of the flexible substrate, the electronic component including at least one bump, arranging a thermosetting anisotropic conductive film having conductive particles on the mounting region, arranging the electronic component on the anisotropic conductive film, and pressing the electronic component while heating to electrically connect the at least one bump of the electronic component to the mounting region of the flexible substrate, and adhering an adhesion film having an adhesive layer including an adhesive and a base film laminated together on a support surface that is opposite to the arrangement surface of the flexible substrate at least at a portion located on a back surface side of the mounting region before electrically connecting the electronic component and the mounting region.
    Type: Application
    Filed: September 21, 2017
    Publication date: January 18, 2018
    Applicant: DEXERIALS CORPORATION
    Inventor: Takayuki MATSUSHIMA
  • Publication number: 20170006712
    Abstract: An adhesive film including a substrate film and an adhesive agent layer formed thereon is adhered to the back surface side of a mounting region of a flexible substrate, and an electronic component is mounted on the front surface side. An adhesive agent in the adhesive agent layer contains silica fine particles having a primary particle diameter of less than 100 nm, and the adhesive agent layer has a shear storage elastic modulus at 160° C. of 0.15 MPa or more. When the anisotropic conductive film is disposed on the mounting region and the electronic component is mounted on the anisotropic conductive film by heating and pressing, the adhesive agent is not pushed out to a large extent, and conductive particles sandwiched between a bump on the electronic component and the electrode are pressed and squashed, improving an electrical connection between the electronic component and the electrode.
    Type: Application
    Filed: September 19, 2016
    Publication date: January 5, 2017
    Applicant: DEXERIALS CORPORATION
    Inventor: Takayuki MATSUSHIMA
  • Publication number: 20150376470
    Abstract: The invention provides a resin composition capable of achieving excellent chromaticity and a sufficient degree of cure, an adhesive tape, and a method for producing an adhesive tape. The adhesive tape has at least one layer formed by making a resin composition undergo a polymerization reaction, the adhesive composition including: an acrylic monomer; a photopolymerization initiator; and a coloring agent which has a mean volume particle diameter of not less than 1 ?m and not more than 20 ?m and in which a pigment is encapsulated in a resin, in which the coloring agent is contained so that the pigment content is not less than 0.25 wt % and not more than 1.0 wt %. This allows aggregation of the coloring agent to be prevented and inhibition of the polymerization reaction to be prevented, and therefore, excellent chromaticity and a sufficient degree of cure can be achieved.
    Type: Application
    Filed: January 28, 2014
    Publication date: December 31, 2015
    Applicant: DEXERIALS CORPORATION
    Inventors: Daisuke MASUKO, Takayuki MATSUSHIMA
  • Patent number: 8044117
    Abstract: A latent curing agent (30) of the present invention includes a core member (31) and a capsule (37) covering up the surface of the core member (31). The core member (31) includes a secondary particle (32) and a curing agent (35) retained in a gap (38) of the secondary particle (32). The curing agent (35) is liquid at ambient temperature. When the capsule (37) is destructed so that the curing agent (35) is emitted into an adhesive, the curing agent (35) is mixed with other ingredients in the adhesive. A metal alcoholate which is liquid at ambient temperature or a metal chelate which is liquid at ambient temperature is used as the curing agent (35), while a silane coupling agent is added to the adhesive. A reaction takes place between the curing agent (35) and the silane coupling agent to yield cations. By these cations, the epoxy resin undergoes cation in polymerization.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: October 25, 2011
    Assignee: Sony Chemical and Information Device Corp.
    Inventors: Takayuki Matsushima, Masao Saito
  • Publication number: 20100227101
    Abstract: An insulating adhesive film and an anisotropically electroconductive adhesive film satisfying low-temperature curability, high adhesion and high reliability are provided. An anisotropically electroconductive adhesive film of the present invention is so configured that electroconductive particles 7 are dispersed in an insulating adhesive resin 6, comprising as main components: a radical polymerizable resin component having an unsaturated double bond; a resin component having no unsaturated double bond; a phosphoric acid-containing resin component; and a radical polymerization initiator.
    Type: Application
    Filed: May 12, 2010
    Publication date: September 9, 2010
    Applicant: Sony Chemical & Information Device Corporation
    Inventors: Masao Saito, Osamu Takamatsu, Takayuki Matsushima
  • Publication number: 20100143604
    Abstract: A latent curing agent (30) of the present invention includes a core member (31) and a capsule (37) covering up the surface of the core member (31). The core member (31) includes a secondary particle (32) and a curing agent (35) retained in a gap (38) of the secondary particle (32). The curing agent (35) is liquid at ambient temperature. When the capsule (37) is destructed so that the curing agent (35) is emitted into an adhesive, the curing agent (35) is mixed with other ingredients in the adhesive. A metal alcoholate which is liquid at ambient temperature or a metal chelate which is liquid at ambient temperature is used as the curing agent (35), while a silane coupling agent is added to the adhesive. A reaction takes place between the curing agent (35) and the silane coupling agent to yield cations. By these cations, the epoxy resin undergoes cation in polymerization.
    Type: Application
    Filed: February 9, 2010
    Publication date: June 10, 2010
    Applicant: SONY CHEMICAL & INFORMATION DEVICE CORPORATION
    Inventors: Takayuki Matsushima, Masao Saito
  • Patent number: 7491290
    Abstract: Disclosed is a two-component adhesive used for electrically and mechanically interconnecting two objects for bonding. The two-component adhesive is made up by first and second adhesive materials separately containing first and second curing agents, respectively. It is only after reaction of the first and second curing agents that the first and second resin components are polymerized. As long as the two adhesive materials are isolated from each other, the adhesive is not cured. In case a metal chelate or a metal alcoholate is used as the first curing agent and a silane coupling agent is used as the second curing agent, cations as a curing component are isolated to cause cationinc polymerization of the first and second resin components to allow for curing at a lower temperature in a shorter time than in case a conventional adhesive is used.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: February 17, 2009
    Assignee: Sony Chemical & Information Device Corporation
    Inventors: Takayuki Matsushima, Masao Saito
  • Publication number: 20080157030
    Abstract: An insulating adhesive film and an anisotropically electroconductive adhesive film satisfying low-temperature curability, high adhesion and high reliability are provided. An anisotropically electroconductive adhesive film of the present invention is so configured that electroconductive particles 7 are dispersed in an insulating adhesive resin 6, comprising as main components: a radical polymerizable resin component having an unsaturated double bond; a resin component having no unsaturated double bond; a phosphoric acid-containing resin component; and a radical polymerization initiator.
    Type: Application
    Filed: January 22, 2008
    Publication date: July 3, 2008
    Applicant: Sony Chemicals Corporation
    Inventors: Masao Saito, Osamu Takamatsu, Takayuki Matsushima
  • Publication number: 20070104973
    Abstract: An insulating adhesive film and an anisotropically electroconductive adhesive film satisfying low-temperature curability, high adhesion and high reliability are provided. An anisotropically electroconductive adhesive film of the present invention is so configured that electroconductive particles 7 are dispersed in an insulating adhesive resin 6, comprising as main components: a radical polymerizable resin component having an unsaturated double bond; a resin component having no unsaturated double bond; a phosphoric acid-containing resin component; and a radical polymerization initiator.
    Type: Application
    Filed: September 1, 2006
    Publication date: May 10, 2007
    Applicant: Sony Chemicals Corporation
    Inventors: Masao Saito, Osamu Takamatsu, Takayuki Matsushima
  • Publication number: 20050257886
    Abstract: Disclosed is a method for producing an electrical device by electrically and mechanically interconnecting two objects for bonding. When an adhesive layer (25) provided to an LCD (11) and a layer of a second curing agent (28) provided to a TCP (15) are brought into tight contact with each other and thrust in this state to each other under heating, a first curing agent in the adhesive layer (25) and a second curing agent forming the layer of the second curing agent react with each other so that the thermosetting resin in the adhesive layer is polymerized to bond the LCD (11) and the TCP (15) together to produce an electrical device. In case a metal chelate or a metal alcoholate and a silane coupling agent are used as the first and second curing agents, respectively, the silane coupling agent and the metal chelate react with each other to yield cations and, by these cations, the thermosetting resin undergoes cationic polymerization.
    Type: Application
    Filed: February 14, 2003
    Publication date: November 24, 2005
    Inventors: Takayuki Matsushima, Masao Saito
  • Patent number: 6921782
    Abstract: A novel adhesive cures quickly at a lower temperature and ensures reliable connection of objects the adhesive connects with each other. The adhesive includes a metal chelate, a silane coupling agent and a thermosetting resin. The silane coupling agent in the adhesive is hydrolyzed at its alkoxy groups to form silanol groups, which in turn react with the metal chelate to produce cations in the adhesive. The resulting cations cause the epoxy resin as a thermosetting resin, to undergo cationic polymerization. The adhesive of the present invention cures at a lower temperature by taking advantage of the cationic polymerization.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: July 26, 2005
    Assignee: Sony Chemicals Corp.
    Inventor: Takayuki Matsushima
  • Publication number: 20050107494
    Abstract: A latent curing agent (30) of the present invention includes a core member (31) and a capsule (37) covering up the surface of the core member (31). The core member (31) includes a secondary particle (32) and a curing agent (35) retained in a gap (38) of the secondary particle (32). The curing agent (35) is liquid at ambient temperature. When the capsule (37) is destructed so that the curing agent (35) is emitted into an adhesive, the curing agent (35) is mixed with other ingredients in the adhesive. A metal alcoholate which is liquid at ambient temperature or a metal chelate which is liquid at ambient temperature is used as the curing agent (35), while a silane coupling agent is added to the adhesive. A reaction takes place between the curing agent (35) and the silane coupling agent to yield cations. By these cations, the epoxy resin undergoes cation in polymerization.
    Type: Application
    Filed: February 14, 2003
    Publication date: May 19, 2005
    Inventors: Takayuki Matsushima, Masao Saito
  • Publication number: 20050096432
    Abstract: Disclosed is a two-component adhesive used for electrically and mechanically interconnecting two objects for bonding. The two-component adhesive is made up by first and second adhesive materials separately containing first and second curing agents, respectively. It is only after reaction of the first and second curing agents that the first and second resin components are polymerized. As long as the two adhesive materials are isolated from each other, the adhesive is not cured. In case a metal chelate or a metal alcoholate is used as the first curing agent and a silane coupling agent is used as the second curing agent, cations as a curing component are isolated to cause cationinc polymerization of the first and second resin components to allow for curing at a lower temperature in a shorter time than in case a conventional adhesive is used.
    Type: Application
    Filed: February 14, 2003
    Publication date: May 5, 2005
    Inventors: Takayuki Matsushima, Masao Saito
  • Patent number: 6831117
    Abstract: With the hardener particle of the present invention, because siloxane or an alkoxy group is bonded to a central metal located on a surface, an adhesive prepared by dispersing the hardener particles in an epoxy resin together with a silane coupling agent hardly causes reaction between the hardener particles and the silane coupling agent at ambient temperature whereby the preserving property of the adhesive is high. Because no siloxane is bonded to metal chelate or metal alcoholate at the part other than the surface of the hardener particles, the hardener particles are broken when the adhesive is heated, and the metal chelate and the metal alcoholate on the part other than the surface of the hardener particles reacts with the silane coupling agent to form cation, thereby polymerizing the epoxy resin with the cation to harden the adhesive even at low temperature within shorter time.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: December 14, 2004
    Assignee: Sony Chemicals Corporation
    Inventor: Takayuki Matsushima
  • Publication number: 20040206943
    Abstract: An insulating adhesive film and an anisotropically electroconductive adhesive film satisfying low-temperature curability, high adhesion and high reliability are provided. An anisotropically electroconductive adhesive film of the present invention is so configured that electroconductive particles 7 are dispersed in an insulating adhesive resin 6, comprising as main components: a radical polymerizable resin component having an unsaturated double bond; a resin component having no unsaturated double bond; a phosphoric acid-containing resin component; and a radical polymerization initiator.
    Type: Application
    Filed: May 12, 2004
    Publication date: October 21, 2004
    Applicant: Sony Chemicals Corporation
    Inventors: Masao Saito, Osamu Takamatsu, Takayuki Matsushima
  • Patent number: 6794038
    Abstract: There is provided an adhesive which hardens under the condition of low temperature within short time and has a high preserving property. The latent hardener of the present invention has hardener particles mainly comprising metal chelate and capsules covering the surface of the hardener particles where, in the surface part of the hardener particles, substituent of the resin component constituting the capsule is bonded to the metal chelate. Accordingly, mechanical strength of the capsule is high whereby the capsule is not broken in a step of kneading the latent hardener with an epoxy resin.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: September 21, 2004
    Assignee: Sony Chemicals Corporation
    Inventor: Takayuki Matsushima
  • Publication number: 20040110004
    Abstract: With the hardener particle of the present invention, because siloxane or an alkoxy group is bonded to a central metal located on a surface, an adhesive prepared by dispersing the hardener particles in an epoxy resin together with a silane coupling agent hardly causes reaction between the hardener particles and the silane coupling agent at ambient temperature whereby the preserving property of the adhesive is high. Because no siloxane is bonded to metal chelate or metal alcoholate at the part other than the surface of the hardener particles, the hardener particles are broken when the adhesive is heated, and the metal chelate and the metal alcoholate on the part other than the surface of the hardener particles reacts with the silane coupling agent to form cation, thereby polymerizing the epoxy resin with the cation to harden the adhesive even at low temperature within shorter time.
    Type: Application
    Filed: December 5, 2002
    Publication date: June 10, 2004
    Inventor: Takayuki Matsushima