Patents by Inventor Takeshi Nogami

Takeshi Nogami has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180108596
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 19, 2018
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Patent number: 9947581
    Abstract: Low capacitance and high reliability interconnect structures and methods of manufacture are disclosed. The method includes forming a copper based interconnect structure in an opening of a dielectric material. The method further includes forming a capping layer on the copper based interconnect structure. The method further includes oxidizing the capping layer and any residual material formed on a surface of the dielectric material. The method further includes forming a barrier layer on the capping layer by outdiffusing a material from the copper based interconnect structure to a surface of the capping layer. The method further includes removing the residual material, while the barrier layer on the surface of the capping layer protects the capping layer.
    Type: Grant
    Filed: July 20, 2016
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. Edelstein, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini, Hosadurga K. Shobha
  • Patent number: 9947622
    Abstract: An electrical device including an opening in a low-k dielectric material, and a copper including structure present within the opening for transmitting electrical current. A liner is present between the opening and the copper including structure. The liner includes a superlattice structure comprised of a metal oxide layer, a metal layer present on the metal oxide layer, and a metal nitride layer that is present on the metal layer. A first layer of the superlattice structure that is in direct contact with the low-k dielectric material is one of said metal oxide layer and a final layer of the superlattice structure that is in direct contact with the copper including structure is one of the metal nitride layers.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Donald F. Canaperi, Daniel C. Edelstein, Alfred Grill, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini, Hosadurga Shobha
  • Patent number: 9947579
    Abstract: Low capacitance and high reliability interconnect structures and methods of manufacture are disclosed. The method includes forming a copper based interconnect structure in an opening of a dielectric material. The method further includes forming a capping layer on the copper based interconnect structure. The method further includes oxidizing the capping layer and any residual material formed on a surface of the dielectric material. The method further includes forming a barrier layer on the capping layer by outdiffusing a material from the copper based interconnect structure to a surface of the capping layer. The method further includes removing the residual material, while the barrier layer on the surface of the capping layer protects the capping layer.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 17, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. Edelstein, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini, Hosadurga K. Shobha
  • Publication number: 20180090587
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 29, 2018
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Publication number: 20180090418
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 29, 2018
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Publication number: 20180090371
    Abstract: Low capacitance and high reliability interconnect structures and methods of manufacture are disclosed. The method includes forming a copper based interconnect structure in an opening of a dielectric material. The method further includes forming a capping layer on the copper based interconnect structure. The method further includes oxidizing the capping layer and any residual material formed on a surface of the dielectric material. The method further includes forming a barrier layer on the capping layer by outdiffusing a material from the copper based interconnect structure to a surface of the capping layer. The method further includes removing the residual material, while the barrier layer on the surface of the capping layer protects the capping layer.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 29, 2018
    Inventors: Daniel C. EDELSTEIN, Son V. NGUYEN, Takeshi NOGAMI, Deepika PRIYADARSHINI, Hosadurga K. SHOBHA
  • Publication number: 20180090588
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 29, 2018
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Publication number: 20180082894
    Abstract: Low capacitance and high reliability interconnect structures and methods of manufacture are disclosed. The method includes forming a copper based interconnect structure in an opening of a dielectric material. The method further includes forming a capping layer on the copper based interconnect structure. The method further includes oxidizing the capping layer and any residual material formed on a surface of the dielectric material. The method further includes forming a barrier layer on the capping layer by outdiffusing a material from the copper based interconnect structure to a surface of the capping layer. The method further includes removing the residual material, while the barrier layer on the surface of the capping layer protects the capping layer.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 22, 2018
    Inventors: Daniel C. EDELSTEIN, Son V. NGUYEN, Takeshi NOGAMI, Deepika PRIYADARSHINI, Hosadurga K. SHOBHA
  • Publication number: 20180068954
    Abstract: A semiconductor structure including a first metal line and a second metal line in a dielectric layer, the first metal line and the second metal line are adjacent and within the same dielectric level; an air gap structure in the dielectric layer and between the first metal line and the second metal line, wherein the air gap structure includes an air gap oxide layer and an air gap; and a barrier layer between the air gap structure and the first metal line, wherein the barrier layer is an oxidized metal layer.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Inventors: Wei Lin, Takeshi Nogami
  • Publication number: 20180068953
    Abstract: A semiconductor structure including a first metal line and a second metal line in a dielectric layer, the first metal line and the second metal line are adjacent and within the same dielectric level; an air gap structure in the dielectric layer and between the first metal line and the second metal line, wherein the air gap structure includes an air gap oxide layer and an air gap; and a barrier layer between the air gap structure and the first metal line, wherein the barrier layer is an oxidized metal layer.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 8, 2018
    Inventors: Wei Lin, Takeshi Nogami
  • Publication number: 20180061708
    Abstract: An etch back air gap (EBAG) process is provided. The EBAG process includes forming an initial structure that includes a dielectric layer disposed on a substrate and a liner disposed to line a trench defined in the dielectric layer. The process further includes impregnating a metallic interconnect material with dopant materials, filling a remainder of the trench with the impregnated metallic interconnect materials to form an intermediate structure and drive-out annealing of the intermediate structure. The drive-out annealing of the intermediate structure serves to drive the dopant materials out of the impregnated metallic interconnect materials and thereby forms a chemical- and plasma- attack immune material.
    Type: Application
    Filed: August 30, 2016
    Publication date: March 1, 2018
    Inventors: Benjamin D. Briggs, Elbert Huang, Takeshi Nogami, Christopher J. Penny
  • Patent number: 9881833
    Abstract: A method for forming interconnect structures includes forming a barrier material over a dielectric layer having a trench, the barrier layer being disposed on sidewalls and horizontal surfaces of the trench, depositing an interconnect layer over the barrier layer to form an interconnect structure, recessing the interconnect layer down to a surface of the barrier layer using a chemical mechanical planarization process, and planarizing the barrier layer and the interconnect layer using a wet etch process to form a coplanar surface to prevent dishing or divots in the interconnect structure.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: January 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Benjamin D. Briggs, Elbert E. Huang, Takeshi Nogami, Raghuveer R. Patlolla, Cornelius B. Peethala, David L. Rath
  • Patent number: 9847295
    Abstract: A semiconductor structure including a first metal line and a second metal line in a dielectric layer, the first metal line and the second metal line are adjacent and within the same dielectric level; an air gap structure in the dielectric layer and between the first metal line and the second metal line, wherein the air gap structure includes an air gap oxide layer and an air gap; and a barrier layer between the air gap structure and the first metal line, wherein the barrier layer is an oxidized metal layer.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: December 19, 2017
    Assignee: International Business Machines Corporation
    Inventors: Wei Lin, Takeshi Nogami
  • Publication number: 20170358533
    Abstract: Low-temperature techniques for doping of Cu interconnects based on interfacially-assisted thermal diffusion are provided. In one aspect, a method of forming doped copper interconnects includes the steps of: patterning at least one trench in a dielectric material; forming a barrier layer lining the trench; forming a metal liner on the barrier layer; depositing a seed layer on the metal liner; plating a Cu fill into the trench to form Cu interconnects; removing a portion of a Cu overburden to access an interface between the metal liner and the Cu fill; depositing a dopant layer; and diffusing a dopant(s) from the dopant layer along the interface to form a Cu interconnect doping layer between the metal liner and the Cu fill. Alternatively, the overburden and the barrier layer/metal liner can be completely removed, and the dopant layer deposited selectively on the Cu fill. An interconnect structure is also provided.
    Type: Application
    Filed: August 7, 2017
    Publication date: December 14, 2017
    Inventors: Benjamin D. Briggs, Lawrence A. Clevenger, Chao-Kun Hu, Takeshi Nogami, Deepika Priyadarshini, Michael Rizzolo
  • Patent number: 9837350
    Abstract: Embodiments are directed to a semiconductor structure having a dual-layer interconnect and a barrier layer. The interconnect structure combines a first conductive layer, a second conductive layer, and a barrier layer disposed between. The result is a low via resistance combined with improved electromigration performance. In one embodiment, the first conductive layer is copper, the second conductive layer is cobalt, and the barrier layer is tantalum nitride. A barrier layer is not used in other embodiments. Other embodiments are also disclosed.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: December 5, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Benjamin D. Briggs, Takeshi Nogami, Raghuveer R. Patlolla
  • Publication number: 20170317032
    Abstract: A semiconductor device includes a metal-containing structure such as a copper-containing wire or plug and a composite capping layer formed over the metal-containing structure. The composite capping layer includes a manganese-containing layer disposed over the metal-containing structure, a silicon-containing low-k dielectric layer disposed over the manganese-containing layer, and an intermediate layer between the manganese-containing layer and the silicon-containing low-k dielectric layer. The intermediate layer is the reaction product of the manganese-containing layer and the silicon-containing low-k dielectric layer.
    Type: Application
    Filed: July 10, 2017
    Publication date: November 2, 2017
    Inventors: Donald F. Canaperi, Son V. Nguyen, Takeshi Nogami, Deepika Priyadarshini
  • Patent number: 9793193
    Abstract: Embodiments are directed to a method of forming a semiconductor device and resulting structures having an air spacer between a gate and a contact by forming a gate on a substrate and over a channel region of a semiconductor fin. A contact is formed on a doped region of the substrate such that a space between the contact and the gate defines a trench. A first dielectric layer is formed over the gate and the contact such that the first dielectric layer partially fills the trench. A second dielectric layer is formed over the first dielectric layer such that an air spacer forms in the trench between the gate and the contact.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: October 17, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Griselda Bonilla, Elbert Huang, Son Nguyen, Takeshi Nogami, Christopher J. Penny, Deepika Priyadarshini
  • Publication number: 20170294382
    Abstract: Embodiments are directed to a semiconductor structure having a dual-layer interconnect and a barrier layer. The interconnect structure combines a first conductive layer, a second conductive layer, and a barrier layer disposed between. The result is a low via resistance combined with improved electromigration performance. In one embodiment, the first conductive layer is copper, the second conductive layer is cobalt, and the barrier layer is tantalum nitride. A barrier layer is not used in other embodiments. Other embodiments are also disclosed.
    Type: Application
    Filed: May 31, 2017
    Publication date: October 12, 2017
    Inventors: BENJAMIN D. BRIGGS, TAKESHI NOGAMI, RAGHUVEER R. PATLOLLA
  • Publication number: 20170294381
    Abstract: Embodiments are directed to a semiconductor structure having a dual-layer interconnect and a barrier layer. The interconnect structure combines a first conductive layer, a second conductive layer, and a barrier layer disposed between. The result is a low via resistance combined with improved electromigration performance. In one embodiment, the first conductive layer is copper, the second conductive layer is cobalt, and the barrier layer is tantalum nitride. A barrier layer is not used in other embodiments. Other embodiments are also disclosed.
    Type: Application
    Filed: April 12, 2016
    Publication date: October 12, 2017
    Inventors: BENJAMIN D. BRIGGS, TAKESHI NOGAMI, Raghuveer R. Patlolla