Patents by Inventor Takeshi Norimatsu

Takeshi Norimatsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090259478
    Abstract: An energy corrector (105) for correcting a target energy for high-frequency components and a corrective coefficient calculator (106) for calculating an energy corrective coefficient from low-frequency subband signals are newly provided. These processors perform a process for correcting a target energy that is required when a band expanding process is performed on a real number only. Thus, a real subband combining filter and a real band expander which require a smaller amount of calculations can be used instead of a complex subband combining filter and a complex band expander, while maintaining a high sound-quality level, and the required amount of calculations and the apparatus scale can be reduced.
    Type: Application
    Filed: February 26, 2009
    Publication date: October 15, 2009
    Applicants: NEC Corporation, Panasonic Corporation
    Inventors: Toshiyuki Nomura, Osamu Shimada, Yuichiro Takamizawa, Masahiro Serizawa, Naoya Tanaka, Mineo Tsushima, Takeshi Norimatsu, Kok Seng Chong, Kim Hann Kuah, Sua Hong Neo
  • Publication number: 20090240503
    Abstract: To provide an acoustic signal processing apparatus which can reduce the amount of calculation in matrix arithmetic. An acoustic signal processing apparatus (24) converts down-mixed acoustic signals of NI channels to acoustic signals of NO channels, where NO>NI.
    Type: Application
    Filed: October 3, 2006
    Publication date: September 24, 2009
    Inventors: Shuji Miyasaka, Yoshiaki Takagi, Takeshi Norimatsu, Akihisa Kawamura, Kojiro Ono, Kok Seng Chong
  • Publication number: 20090234657
    Abstract: A temporal processing apparatus (energy shaping apparatus) (600a) includes: a splitter (601) splitting an audio signal, included in the sub-band domain, which are obtained through a hybrid time and frequency transformation into diffuse signals indicating reverberating components and direct signals indicating non-reverberating components; a downmix unit (604) generating a downmix signal by downmixing the direct signals; BPFs (605 and 606) respectively generating a bandpass downmix signal and bandpass diffuse signals, by performing bandpass processing on the downmix signal and the diffuse signals on a sub-band-to-sub-band basis, which are split on the sub-band basis; normalization processing units (607 and 608) respectively generating a normalized downmix signal and normalized diffuse signals by normalizing the bandpass downmix signal and the bandpass diffuse signals with regard to respective energy; a scale computation processing unit (609) computing, on a predetermined time slot basis, a scale factor indicati
    Type: Application
    Filed: August 31, 2006
    Publication date: September 17, 2009
    Inventors: Yoshiaki Takagi, Kok Seng Chong, Takeshi Norimatsu, Shuji Miyasaka, Akihisa Kawamura, Kojiro Ono, Tomokazu Ishikawa
  • Patent number: 7555434
    Abstract: An energy corrector (105) for correcting a target energy for high-frequency components and a corrective coefficient calculator (106) for calculating an energy corrective coefficient from low-frequency subband signals are newly provided. These processors perform a process for correcting a target energy that is required when a band expanding process is performed on a real number only. Thus, a real subband combining filter and a real band expander which require a smaller amount of calculations can be used instead of a complex subband combining filter and a complex band expander, while maintaining a high sound-quality level, and the required amount of calculations and the apparatus scale can be reduced.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: June 30, 2009
    Assignees: NEC Corporation, Panasonic Corporation
    Inventors: Toshiyuki Nomura, Osamu Shimada, Yuichiro Takamizawa, Masahiro Serizawa, Naoya Tanaka, Mineo Tsushima, Takeshi Norimatsu, Kok Seng Chong, Kim Hann Kuah, Sua Hong Neo
  • Publication number: 20090157393
    Abstract: An encoding device (200) includes an MDCT unit (202) that transforms an input signal in a time domain into a frequency spectrum including a lower frequency spectrum, a BWE encoding unit (204) that generates extension data which specifies a higher frequency spectrum at a higher frequency than the lower frequency spectrum, and an encoded data stream generating unit (205) that encodes to output the lower frequency spectrum obtained by the MDCT unit (202) and the extension data obtained by the BWE encoding unit (204). The BWE encoding unit (204) generates as the extension data (i) a first parameter which specifies a lower subband which is to be copied as the higher frequency spectrum from among a plurality of the lower subbands which form the lower frequency spectrum obtained by the MDCT unit (202) and (ii) a second parameter which specifies a gain of the lower subband after being copied.
    Type: Application
    Filed: February 12, 2009
    Publication date: June 18, 2009
    Inventors: Mineo TSUSHIMA, Takeshi NORIMATSU, Kosuke NISHIO, Naoya TANAKA
  • Publication number: 20090122182
    Abstract: A signal processing device (1) includes: a generation unit (32) which generates a second signal from a first signal that is obtained by downmixing two signals; a mixing coefficient determination unit (40) which determines, based on a value L and a value ?, a mixing degree for mixing the first signal and the second signal, the value L indicating a level ratio between the two signals, and the value ? indicating a phase difference between the two signals; and a mixing unit (50) which mixes the first signal and the second signal based on the mixing degree determined by the mixing coefficient determination unit (40). The generation unit (32) includes: a first filter (302) which generates a low frequency band signal in the second signal, from a low frequency band signal in the first signal; and a second filter (a processing unit 307) which generates a high frequency band signal in the second signal, from a high frequency band signal in the first signal.
    Type: Application
    Filed: July 10, 2006
    Publication date: May 14, 2009
    Inventors: Shuji Miyasaka, Yosiaki Takagi, Takeshi Norimatsu, Akihisa Kawamura, Kojiro Ono
  • Patent number: 7509254
    Abstract: An encoding device (200) includes an MDCT unit (202) that transforms an input signal in a time domain into a frequency spectrum including a lower frequency spectrum, a BWE encoding unit (204) that generates extension data which specifies a higher frequency spectrum at a higher frequency than the lower frequency spectrum, and an encoded data stream generating unit (205) that encodes to output the lower frequency spectrum obtained by the MDCT unit (202) and the extension data obtained by the BWE encoding unit (204). The BWE encoding unit (204) generates as the extension data (i) a first parameter which specifies a lower subband which is to be copied as the higher frequency spectrum from among a plurality of the lower subbands which form the lower frequency spectrum obtained by the MDCT unit (202) and (ii) a second parameter which specifies a gain of the lower subband after being copied.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: March 24, 2009
    Assignee: Panasonic Corporation
    Inventors: Mineo Tsushima, Takeshi Norimatsu, Kosuke Nishio, Naoya Tanaka
  • Patent number: 7451091
    Abstract: A frame type for a current SBR frame is determined according to a type of end border of a previous frame, as well as presence of a transient in the current SBR frame. A start border is determined according to the end border of the previous SBR frame. For a FIXFIX frame, a low time-resolution setting is used. For a FIXVAR or a VARVAR frame, a search for intermediate borders is conducted in the region between the transient and maximum allowed end border location. The end border is also determined at this stage. If there is excess capacity for more borders, another search is conducted in the region between the transient and the start border. For a VARFIX frame, only one search needs to be conducted, in the whole region partitioned by a variable start border and a fixed end border. All of the above are accomplished with two Forward Search operations and one Backward Search operation.
    Type: Grant
    Filed: October 4, 2004
    Date of Patent: November 11, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kok Seng Chong, Sua Hong Neo, Naoya Tanaka, Takeshi Norimatsu
  • Patent number: 7392176
    Abstract: An audio data input unit of an encoding device splits an audio data string into contiguous samples of audio data, and a transforming unit transforms the split audio data into spectral data in a frequency domain. A data dividing unit divides the spectral data into a lower frequency band and a higher frequency band at 11.025 kHz (f1) as a boundary. The spectral data in the lower frequency band is quantized and encoded by a first quantizing unit and an encoding unit. A second quantizing unit generates sub information indicating a characteristic of the spectral data in the higher frequency band, and a second encoding unit encodes the sub information. A stream output unit integrates the codes obtained by the first and second encoding units and outputs the integrated one. Here, f1 is a half or less of a sampling frequency f2 at which the audio data string is created.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: June 24, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kosuke Nishio, Takeshi Norimatsu, Mineo Tsushima, Naoya Tanaka
  • Patent number: 7328160
    Abstract: An encoding device includes a transforming unit operable to extract a part of an inputted audio signal at predetermined time intervals and to transform each extracted part to produce a plurality of windows composed of short blocks, and a judging unit operable to compare the windows with one another to judge whether there is a similarity of a predetermined degree and to replace a high frequency part of a first window, which is one of the produced windows, with values ā€œ0ā€ when there is the similarity, wherein the first window and a second window share a high frequency part of the second window, which is also one of the produced windows. The encoding device also includes a first quantizing unit operable to quantize the produced windows after replacing operation; a first encoding unit operable to encode the quantized windows to produce encoded data; and a stream output unit operable to output the produced encoded data.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: February 5, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kosuke Nishio, Takeshi Norimatsu, Mineo Tsushima, Naoya Tanaka
  • Patent number: 7308401
    Abstract: An encoding device (200) includes an MDCT unit (202) that transforms an input signal in a time domain into a frequency spectrum including a lower frequency spectrum, a BWE encoding unit (204) that generates extension data which specifies a higher frequency spectrum at a higher frequency than the lower frequency spectrum, and an encoded data stream generating unit (205) that encodes to output the lower frequency spectrum obtained by the MDCT unit (202) and the extension data obtained by the BWE encoding unit (204). The BWE encoding unit (204) generates as the extension data (i) a first parameter which specifies a lower subband which is to be copied as the higher frequency spectrum from among a plurality of the lower subbands which form the lower frequency spectrum obtained by the MDCT unit (202) and (ii) a second parameter which specifies a gain of the lower subband after being copied.
    Type: Grant
    Filed: August 24, 2006
    Date of Patent: December 11, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mineo Tsushima, Takeshi Norimatsu, Kosuke Nishio, Naoya Tanaka
  • Patent number: 7283967
    Abstract: An encoding device (100) includes (i) a first encoding unit (132) that encodes spectral data in the lower frequency band represented by a plularity of parameters, out of the spectral data obtained by transforming an audio signal inputted for a fixed time length, (ii) a second quantizing unit (133) that generates sub information representing characteristics of the spectral data in the higher frequency by fewer parameters than those for the lower frequency band, out of the spectral data obtained by the transformation, (iii) a second encoding unit (134) that encodes the generated sub information, and (iv) a stream output unit (140) that outputs the data encoded by the first encoding unit (132) and the data encoded by the second encoding unit (134).
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: October 16, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kosuke Nishio, Mineo Tsushima, Naoya Tanaka, Takeshi Norimatsu
  • Patent number: 7269550
    Abstract: An encoding device (200) includes: a time characteristic extracting unit (203) that specifies a band for a part of a frequency spectrum based on a characteristic of an audio input signal in a time domain; a time transforming unit (204) that transforms a signal in the specified band to a signal according to frequency-time transform; and an encoded data stream generating unit (205) that encodes the signal obtained by the time transforming unit (204) and at least a part of the frequency spectrum, and generates an output encoded data stream from the encoded signal and the encoded frequency spectrum.
    Type: Grant
    Filed: April 9, 2003
    Date of Patent: September 11, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mineo Tsushima, Takeshi Norimatsu, Naoya Tanaka
  • Patent number: 7260541
    Abstract: A decoding device is a decoding device that generates frequency spectral data from an inputted encoded audio data stream, and includes: a core decoding unit for decoding the inputted encoded data stream and generating lower frequency spectral data representing an audio signal; and an extended decoding unit for generating, based on the lower frequency spectral data, extended frequency spectral data indicating a harmonic structure, which is same as an extension along the frequency axis of the harmonic structure indicated by the lower frequency spectral data, in a frequency region which is not represented by the encoded data stream.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: August 21, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mineo Tsushima, Takeshi Norimatsu, Naoya Tanaka, Kosuke Nishio
  • Patent number: 7246065
    Abstract: An encoding device (200) is comprised of a band dividing unit (201) that divides an input signal (207) into a low frequency signal (208) representing a signal in the lower frequency band and a high frequency signal (209) representing a signal in the higher frequency band, a lower frequency band encoding unit (202) that encodes the low frequency signal (208) and generates a low frequency code (213), a similarity judging unit (203) that judges similarity between the high frequency signal (209) and the low frequency signal (208) and generates switching information (210), ā€œnā€ higher frequency band encoding units 205 that encode the high frequency signal (209) through respective encoding methods and generate a high frequency code (212), a switching unit (204) that selects one of the higher frequency band encoding units (205) and has the selected higher frequency band encoding unit (205) perform encoding, and a code multiplexing unit (206) that multiplexes the low frequency code (213), the high frequency code (212)
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: July 17, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Naoya Tanaka, Mineo Tsushima, Takeshi Norimatsu
  • Patent number: 7243061
    Abstract: With respect to audio signal coding and decoding apparatuses, there is provided a coding apparatus that enables a decoding apparatus to reproduce an audio signal even through it does not use all of data from the coding apparatus, and a decoding apparatus corresponding to the coding apparatus. A quantization unit constituting a coding apparatus includes a first sub-quantization unit comprising sub-quantization units for low-band, intermediate-band, and high-band; a second sub-quantization unit for quantizing quantization errors from the first sub-quantization unit; and a third sub-quantization unit for quantizing quantization errors which have been processed by the first sub-quantization unit and the second sub-quantization unit.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: July 10, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takeshi Norimatsu, Shuji Miyasaka, Yoshihisa Nakatoh, Mineo Tsushima, Tomokazu Ishikawa
  • Publication number: 20070156397
    Abstract: According to the present invention, it is possible to calculate appropriate chirp factor and noise component amount with a little processing amount. Input subband signal is segmented into a plurality of ranges by a range segmentation unit 101. The range segmentation is performed for energy value calculation, chirp factor calculation, noise component calculation, and tone component calculation, respectively, and determined range segmentation information ei, bi, qi, and hi are outputted. Respective processing for the energy calculation, the chirp factor calculation, the tone component calculation, and the noise component calculation are performed sequentially for the respective corresponding ranges. By using linear prediction processing, it is possible to obtain an parameter having higher accuracy with a little operation amount.
    Type: Application
    Filed: April 20, 2005
    Publication date: July 5, 2007
    Inventors: Kok Seng Chong, Sua Hong Neo, Naoya Tanaka, Takeshi Norimatsu
  • Publication number: 20070005353
    Abstract: An encoding device (200) includes an MDCT unit (202) that transforms an input signal in a time domain into a frequency spectrum including a lower frequency spectrum, a BWE encoding unit (204) that generates extension data which specifies a higher frequency spectrum at a higher frequency than the lower frequency spectrum, and an encoded data stream generating unit (205) that encodes to output the lower frequency spectrum obtained by the MDCT unit (202) and the extension data obtained by the BWE encoding unit (204). The BWE encoding unit (204) generates as the extension data (i) a first parameter which specifies a lower subband which is to be copied as the higher frequency spectrum from among a plurality of the lower subbands which form the lower frequency spectrum obtained by the MDCT unit (202) and (ii) a second parameter which specifies a gain of the lower subband after being copied.
    Type: Application
    Filed: August 24, 2006
    Publication date: January 4, 2007
    Inventors: Mineo Tsushima, Takeshi Norimatsu, Kosuke Nishio, Naoya Tanaka
  • Publication number: 20060287853
    Abstract: An encoding device (200) includes an MDCT unit (202) that transforms an input signal in a time domain into a frequency spectrum including a lower frequency spectrum, a BWE encoding unit (204) that generates extension data which specifies a higher frequency spectrum at a higher frequency than the lower frequency spectrum, and an encoded data stream generating unit (205) that encodes to output the lower frequency spectrum obtained by the MDCT unit (202) and the extension data obtained by the BWE encoding unit (204). The BWE encoding unit (204) generates as the extension data (i) a first parameter which specifies a lower subband which is to be copied as the higher frequency spectrum from among a plurality of the lower subbands which form the lower frequency spectrum obtained by the MDCT unit (202) and (ii) a second parameter which specifies a gain of the lower subband after being copied.
    Type: Application
    Filed: August 24, 2006
    Publication date: December 21, 2006
    Inventors: Mineo Tsushima, Takeshi Norimatsu, Kosuke Nishio, Naoya Tanaka
  • Patent number: 7139702
    Abstract: An encoding device (200) includes an MDCT unit (202) that transforms an input signal in a time domain into a frequency spectrum including a lower frequency spectrum, a BWE encoding unit (204) that generates extension data which specifies a higher frequency spectrum at a higher frequency than the lower frequency spectrum, and an encoded data stream generating unit (205) that encodes to output the lower frequency spectrum obtained by the MDCT unit (202) and the extension data obtained by the BWE encoding unit (204). The BWE encoding unit (204) generates as the extension data (i) a first parameter which specifies a lower subband which is to be copied as the higher frequency spectrum from among a plurality of the lower subbands which form the lower frequency spectrum obtained by the MDCT unit (202) and (ii) a second parameter which specifies a gain of the lower subband after being copied.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: November 21, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mineo Tsushima, Takeshi Norimatsu, Kosuke Nishio, Naoya Tanaka