Patents by Inventor Takeshi Yatsuo

Takeshi Yatsuo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914017
    Abstract: Super-resolution processing is performed on an MRI image by using an NMR signal as a point spread function (PSF). Image processing of increasing a resolution is performed on a reconstructed image by using the point spread function. The point spread function is a signal obtained by, after a phantom disposed in an imaging space is irradiated with a high-frequency magnetic field, acquiring a nuclear magnetic resonance signal from the phantom without applying frequency encoding and phase encoding, and performing Fourier transform on the acquired nuclear magnetic resonance signal.
    Type: Grant
    Filed: September 2, 2022
    Date of Patent: February 27, 2024
    Assignee: FUJIFILM Healthcare Corporation
    Inventor: Takeshi Yatsuo
  • Publication number: 20230103170
    Abstract: Super-resolution processing is performed on an MRI image by using an NMR signal as a point spread function (PSF) . Image processing of increasing a resolution is performed on a reconstructed image by using the point spread function. The point spread function is a signal obtained by, after a phantom disposed in an imaging space is irradiated with a high-frequency magnetic field, acquiring a nuclear magnetic resonance signal from the phantom without applying frequency encoding and phase encoding, and performing Fourier transform on the acquired nuclear magnetic resonance signal.
    Type: Application
    Filed: September 2, 2022
    Publication date: March 30, 2023
    Inventor: Takeshi Yatsuo
  • Publication number: 20230078113
    Abstract: An object of the invention is to perform MRI imaging which is less likely to be affected by a body motion without prolonging an imaging time. The control unit takes in images captured by the camera at a predetermined frame rate. The imaging pulse sequence is divided into small sequences at a time width corresponding to the frame rate of the camera. The control unit, before causing the imaging unit to execute one small sequence, detects a displacement of the subject with respect to a predetermined reference position or a motion speed of the subject based on an image of the latest frame, and causes the imaging unit to execute the small sequence when a detection result is within a predetermined allowable range and waits until an image of a next frame is taken in according to the frame rate without causing the imaging unit to execute the small sequence when the detection result exceeds the allowable range.
    Type: Application
    Filed: September 2, 2022
    Publication date: March 16, 2023
    Inventors: Takeshi Yatsuo, Kazuyuki Kato
  • Patent number: 11002811
    Abstract: Provided are a magnetic resonance imaging device and a superconducting magnet capable of preventing generation of eddy currents accompanying vibration of a radiation shield and of reducing image quality deterioration. The superconducting magnet for a magnetic resonance imaging device includes a substantially cylindrical vacuum vessel, a substantially cylindrical radiation shield that is provided inside the vacuum vessel, and a superconducting coil that is provided inside the radiation shield. The radiation shield has an inner cylinder located radially inward of the superconducting coil. The inner cylinder of the radiation shield is provided with an annular rib formed in a circumferential direction about the central axis of the inner cylinder.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 11, 2021
    Assignee: Hitachi, Ltd.
    Inventors: Yukinobu Imamura, Akira Kurome, Shin Hoshino, Takeshi Yatsuo, Takuya Fujikawa
  • Patent number: 10996295
    Abstract: Provided is a noise source search device to be applied to an MM apparatus that obtains an NMR signal generated from a subject disposed in a static magnetic field by applying an RF pulse of a high frequency coil and a gradient magnetic field pulse of a gradient magnetic field coil to the subject, the device including: a reference antenna and a probe antenna that measure a noise generated in the MRI apparatus; a noise generation condition specification unit that specifies an axis and a drive frequency as a noise generation condition generated in the MRI apparatus, on the basis of a noise intensity of the noise that is measured by the reference antenna; and a noise generation site specification unit that drives the gradient magnetic field coil under the noise generation condition that is specified by the noise generation condition specification unit.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: May 4, 2021
    Assignee: HITACHI, LTD.
    Inventor: Takeshi Yatsuo
  • Publication number: 20210116523
    Abstract: Provided is a noise source search device to be applied to an MM apparatus that obtains an NMR signal generated from a subject disposed in a static magnetic field by applying an RF pulse of a high frequency coil and a gradient magnetic field pulse of a gradient magnetic field coil to the subject, the device including: a reference antenna and a probe antenna that measure a noise generated in the MRI apparatus; a noise generation condition specification unit that specifies an axis and a drive frequency as a noise generation condition generated in the MRI apparatus, on the basis of a noise intensity of the noise that is measured by the reference antenna; and a noise generation site specification unit that drives the gradient magnetic field coil under the noise generation condition that is specified by the noise generation condition specification unit.
    Type: Application
    Filed: August 3, 2018
    Publication date: April 22, 2021
    Applicant: HITACHI, LTD.
    Inventor: Takeshi Yatsuo
  • Patent number: 10859649
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes: a cylindrical magnetic pole for generating a static magnetic field in an imaging region; a cylindrical gradient magnetic field coil arranged on a radially inner side of the magnetic pole, coaxially with the magnetic pole to generate a dynamic magnetic field having a linear magnetic field strength in the imaging region; a cylindrical high frequency coil arranged on a radially inner side of the gradient magnetic field coil, coaxially with the magnetic pole and the gradient magnetic field coil to generate a high frequency magnetic field in the imaging region; and a computer system for processing signals to obtain images. The magnetic resonance imaging apparatus further includes at least two loop-shaped additional coils arranged on the radially outer side of the gradient magnetic field coil and having different electric current circulating direction.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: December 8, 2020
    Assignee: HITACHI, LTD.
    Inventors: Yukinobu Imamura, Akira Kurome, Takeshi Yatsuo
  • Publication number: 20200371178
    Abstract: Provided are a magnetic resonance imaging device and a superconducting magnet capable of preventing generation of eddy currents accompanying vibration of a radiation shield and of reducing image quality deterioration. The superconducting magnet for a magnetic resonance imaging device includes a substantially cylindrical vacuum vessel, a substantially cylindrical radiation shield that is provided inside the vacuum vessel, and a superconducting coil that is provided inside the radiation shield. The radiation shield has an inner cylinder located radially inward of the superconducting coil. The inner cylinder of the radiation shield is provided with an annular rib formed in a circumferential direction about the central axis of the inner cylinder.
    Type: Application
    Filed: February 4, 2020
    Publication date: November 26, 2020
    Applicant: HITACHI, LTD.
    Inventors: Yukinobu Imamura, Akira Kurome, Shin Hoshino, Takeshi Yatsuo, Takuya Fujikawa
  • Publication number: 20200072922
    Abstract: According to one embodiment, a magnetic resonance imaging apparatus includes: a cylindrical magnetic pole for generating a static magnetic field in an imaging region; a cylindrical gradient magnetic field coil arranged on a radially inner side of the magnetic pole, coaxially with the magnetic pole to generate a dynamic magnetic field having a linear magnetic field strength in the imaging region; a cylindrical high frequency coil arranged on a radially inner side of the gradient magnetic field coil, coaxially with the magnetic pole and the gradient magnetic field coil to generate a high frequency magnetic field in the imaging region; and a computer system for processing signals to obtain images. The magnetic resonance imaging apparatus further includes at least two loop-shaped additional coils arranged on the radially outer side of the gradient magnetic field coil and having different electric current circulating direction.
    Type: Application
    Filed: April 15, 2019
    Publication date: March 5, 2020
    Applicant: Hitachi, Ltd.
    Inventors: Yukinobu IMAMURA, Akira KUROME, Takeshi YATSUO
  • Publication number: 20200064422
    Abstract: The present invention provides an acoustic generator for an MRI device which is good for communication with a subject and an MRI device having the acoustic generator. An acoustic generator for an MRI device has an acoustic coil, a diaphragm which oscillates based on force generated in the acoustic coil by an interaction between current flowing in the acoustic coil and a magnetic field for imaging generated by the MRI device, and a supporting member oscillatably supporting the diaphragm. A force generated in the acoustic coil changes according to a change in the current flowing in the acoustic coil. The diaphragm vibrates air in accordance with the change in the force, thereby generating acoustics.
    Type: Application
    Filed: February 7, 2017
    Publication date: February 27, 2020
    Applicant: Hitachi, Ltd.
    Inventor: Takeshi YATSUO
  • Patent number: 10534048
    Abstract: A Q value of the RF irradiation coil is easily obtained in a state in which an object is disposed in an MRI apparatus, and an SAR is predicted with high accuracy. For this, an irradiation coil 14a irradiates an object 1 with a high frequency magnetic field pulse in a state in which the object 1 is disposed in an imaging space, and a transmitted voltage and a reflected voltage of the irradiation coil 14a are detected. A Q value of the irradiation coil in a state of the object 1 being disposed is obtained on the basis of the transmitted voltage and the reflected voltage. A specific absorption rate (SAR) in a case of executing an imaging pulse sequence on the object is predicted by using the Q value.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: January 14, 2020
    Assignee: HITACHI, LTD.
    Inventors: Koichi Arai, Takeshi Yatsuo, Yoshiaki Sato
  • Patent number: 10429461
    Abstract: A magnetic resonance imaging device produces a magnetic field gradient with parallel driving of positive-side subcoils and negative-side subcoils with different power sources in the magnetic field gradient direction, to detect a misalignment in drive timing of the positive side and the negative side. Pulse sequences for timing misalignment detection having a slice magnetic field gradient pulse and a read-out magnetic field gradient pulse in the same direction as a magnetic field gradient of interest are executed. A positive-side slice echo and a negative-side slice echo of the magnetic field gradient are acquired. A phase difference between a positive-side projection image and a negative-side projection image is derived by computation with phase error from other factors being removed. From the slope of the phase difference with respect to a location, the drive timing misalignment between the positive-side subcoil and the negative-side subcoil of the magnetic field gradient production is detected.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: October 1, 2019
    Assignee: Hitachi, Ltd.
    Inventors: Yo Taniguchi, Masahiro Takizawa, Takeshi Yatsuo, Atsushi Kuratani
  • Patent number: 9689938
    Abstract: In a gradient magnetic field coil device including: a plurality of main coils generating in an imaging region of a magnetic field resonance imaging device a magnetic field distribution in which an intensity linearly inclines; and a plurality of shield coils, arranged on an opposite side of the imaging region across the main coils, suppressing residual magnetic field generated by the main coils on the opposite side. The plurality of main coils and the plurality of shield coils are connected in series. The device further includes a plurality of current adjusting devices, connected to the shield coils in parallel, independently adjusting currents flowing through the shield coils, respectively, to enhance symmetry of the residual magnetic field. The gradient magnetic field coil device is provided which can suppress generation of eddy current magnetic field even if there is a relative position deviation between the main coils and shield coils.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: June 27, 2017
    Assignee: Hitachi, Ltd.
    Inventors: Yukinobu Imamura, Mitsushi Abe, Takeshi Yatsuo, Masanao Terada, Ryuya Ando, Takeshi Kawamura
  • Publication number: 20160025824
    Abstract: A magnetic resonance imaging device produces a magnetic field gradient with parallel driving of positive-side subcoils and negative-side subcoils with different power sources in the magnetic field gradient direction, to detect a misalignment in drive timing of the positive side and the negative side. Pulse sequences for timing misalignment detection having a slice magnetic field gradient pulse and a read-out magnetic field gradient pulse in the same direction as a magnetic field gradient of interest are executed. A positive-side slice echo and a negative-side slice echo of the magnetic field gradient are acquired. A phase difference between a positive-side projection image and a negative-side projection image is derived by computation with phase error from other factors being removed. From the slope of the phase difference with respect to a location, the drive timing misalignment between the positive-side subcoil and the negative-side subcoil of the magnetic field gradient production is detected.
    Type: Application
    Filed: December 4, 2013
    Publication date: January 28, 2016
    Inventors: Yo TANIGUCHI, Masahiro TAKIZAWA, Takeshi YATSUO, Atsushi KURATANI
  • Publication number: 20150293187
    Abstract: A Q value of the RF irradiation coil is easily obtained in a state in which an object is disposed in an MRI apparatus, and an SAR is predicted with high accuracy. For this, an irradiation coil 14a irradiates an object 1 with a high frequency magnetic field pulse in a state in which the object 1 is disposed in an imaging space, and a transmitted voltage and a reflected voltage of the irradiation coil 14a are detected. A Q value of the irradiation coil in a state of the object 1 being disposed is obtained on the basis of the transmitted voltage and the reflected voltage. A specific absorption rate (SAR) in a case of executing an imaging pulse sequence on the object is predicted by using the Q value.
    Type: Application
    Filed: November 11, 2013
    Publication date: October 15, 2015
    Inventors: Koichi Arai, Takeshi Yatsuo, Yoshiaki Sato
  • Patent number: 9075119
    Abstract: In the magnetic resonance imaging device, the distance between the first and second coils is different in the circumferential direction and has a first region (A1) (?=0, ?) and a second region (A2) (?=?/2) narrower than the first region (A1). In the first coil, wiring patterns (17a, 17b) on the side of a zero-plane (F0) passing through the center of the first coil and perpendicular to the axis direction (z-axis direction) meander in the circumferential direction such that the wiring patterns (17a, 17b) depart from the zero-plane (F0) in the first region (A1) and approach the zero-plane (F0) in the second region (A2). This provides a gradient magnetic field coil capable of configuring wiring patterns without using a loop coil that does not pass through the z-axis.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: July 7, 2015
    Assignee: HITACHI MEDICAL CORPORATION
    Inventors: Masanao Terada, Mitsushi Abe, Yukinobu Imamura, Hiroyuki Takeuchi, Takeshi Yatsuo, Akira Kurome
  • Patent number: 8984684
    Abstract: The magnetic resonance imaging device of the present invention includes a gantry and a bed part comprising a top panel, the gantry comprises a circumferential panel covering outer circumference of a tunnel-shaped static magnetic field space, and a front panel having an opening serving as entrance of a bore for the static magnetic field space, this front panel comprises an arc-shaped outer panel extending from an upper part of the opening serving as entrance of the bore to the ground plane via both sides of the opening, and an inner panel disposed inside the outer panel, a portion connecting the outer panel and the inner panel constitutes a top surface protruding forwardly, and the inner panel is formed in a recessed shape with a concave curved surface extending from the top surface to the opening serving as entrance of the bore.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: March 24, 2015
    Assignee: Hitachi Medical Corporation
    Inventors: Atsushi Ninomiya, Masaru Yokoyama, Kazuyuki Yanase, Manabu Yanagimoto, Takeshi Yatsuo, Hiroyuki Ohzeki
  • Publication number: 20140176138
    Abstract: In a gradient magnetic field coil device including: a plurality of main coils generating in an imaging region of a magnetic field resonance imaging device a magnetic field distribution in which an intensity linearly inclines; and a plurality of shield coils, arranged on an opposite side of the imaging region across the main coils, suppressing residual magnetic field generated by the main coils on the opposite side. The plurality of main coils and the plurality of shield coils are connected in series. The device further includes a plurality of current adjusting devices, connected to the shield coils in parallel, independently adjusting currents flowing through the shield coils, respectively, to enhance symmetry of the residual magnetic field. The gradient magnetic field coil device is provided which can suppress generation of eddy current magnetic field even if there is a relative position deviation between the main coils and shield coils.
    Type: Application
    Filed: August 10, 2012
    Publication date: June 26, 2014
    Applicant: HITACHI MEDICAL CORPORATION
    Inventors: Yukinobu Imamura, Mitsushi Abe, Takeshi Yatsuo, Masanao Terada, Ryuya Ando, Takeshi Kawamura
  • Publication number: 20130184564
    Abstract: The magnetic resonance imaging device of the present invention includes a gantry and a bed part comprising a top panel, the gantry comprises a circumferential panel covering outer circumference of a tunnel-shaped static magnetic field space, and a front panel having an opening serving as entrance of a bore for the static magnetic field space, this front panel comprises an arc-shaped outer panel extending from an upper part of the opening serving as entrance of the bore to the ground plane via both sides of the opening, and an inner panel disposed inside the outer panel, a portion connecting the outer panel and the inner panel constitutes a top surface protruding forwardly, and the inner panel is formed in a recessed shape with a concave curved surface extending from the top surface to the opening serving as entrance of the bore.
    Type: Application
    Filed: July 14, 2011
    Publication date: July 18, 2013
    Applicant: HITACHI MEDICAL CORPORATION
    Inventors: Atsushi Ninomiya, Masaru Yokoyama, Kazuyuki Yanase, Manabu Yanagimoto, Takeshi Yatsuo, Hiroyuki Ohzeki
  • Patent number: D702352
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: April 8, 2014
    Assignee: Hitachi Medical Corporation
    Inventors: Masaru Yokoyama, Atsushi Ninomiya, Shin Hoshino, Satoshi Yamashita, Takeshi Yatsuo