Patents by Inventor Te-Li Lau

Te-Li Lau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8019975
    Abstract: The present invention provides a system and method for managing load and store operations necessary for reading from and writing to memory or I/O in a superscalar RISC architecture environment. To perform this task, a load store unit is provided whose main purpose is to make load requests out of order whenever possible to get the load data back for use by an instruction execution unit as quickly as possible. A load operation can only be performed out of order if there are no address collisions and no write pendings. An address collision occurs when a read is requested at a memory location where an older instruction will be writing. Write pending refers to the case where an older instruction requests a store operation, but the store address has not yet been calculated. The data cache unit returns 8 bytes of unaligned data. The load/store unit aligns this data properly before it is returned to the instruction execution unit.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: September 13, 2011
    Assignee: Seiko-Epson Corporation
    Inventors: Cheryl Senter Brashears, Johannes Wang, Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 7941635
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: May 10, 2011
    Assignee: Seiko-Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 7739482
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: June 15, 2010
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 7721070
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: May 18, 2010
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 7657712
    Abstract: A memory control unit for controlling access, by one or more devices within a processor, to a memory array unit external to the processor via one or more memory ports of the processor. The memory control unit includes a switch network to transfer data between the one or more devices of the processor and the one or more memory ports of the processor. The memory control unit also includes a switch arbitration unit to arbitrate for the switch network, and a port arbitration unit to arbitrate for the one or more memory ports.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: February 2, 2010
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 7555632
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: June 30, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 7487333
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: February 3, 2009
    Assignee: Seiko Epson Corporation
    Inventors: Le-Trong Nguyen, Derek J Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H Trang
  • Publication number: 20090019261
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: September 22, 2008
    Publication date: January 15, 2009
    Applicant: Seiko Epson Corporation
    Inventors: Le Trong NGUYEN, Derek J. LENTZ, Yoshiyuki MIYAYAMA, Sanjiv GARG, Yasuaki HAGIWARA, Johannes WANG, Te-Li LAU, Sze-Shun WANG, Quang H. TRANG
  • Publication number: 20070106878
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Application
    Filed: December 21, 2006
    Publication date: May 10, 2007
    Inventors: Le Nguyen, Derek Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang Trang
  • Publication number: 20070101103
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Application
    Filed: December 19, 2006
    Publication date: May 3, 2007
    Inventors: Le Nguyen, Derek Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang Trang
  • Patent number: 7162610
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: January 9, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H Trang
  • Publication number: 20060149925
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Application
    Filed: December 27, 2005
    Publication date: July 6, 2006
    Applicant: Seiko Epson Corporation
    Inventors: Le Nguyen, Derek Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang Trang
  • Patent number: 7028161
    Abstract: The high-performance, RISC core based microprocessor architecture includes an instruction fetch unit for fetching instruction sets from an instruction store and an execution unit that implements the concurrent execution of a plurality of instructions through a parallel array of functional units. The fetch unit generally maintains a predetermined number of instructions in an instruction buffer. The execution unit includes an instruction selection unit, coupled to the instruction buffer, for selecting instructions for execution, and a plurality of functional units for performing instruction specified functional operations. A unified instruction scheduler, within the instruction selection unit, initiates the processing of instructions through the functional units when instructions are determined to be available for execution and for which at least one of the functional units implementing a necessary computational function is available.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: April 11, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20060064569
    Abstract: A memory control unit for controlling access, by one or more devices within a processor, to a memory array unit external to the processor via one or more memory ports of the processor. The memory control unit includes a switch network to transfer data between the one or more devices of the processor and the one or more memory ports of the processor. The memory control unit also includes a switch arbitration unit to arbitrate for the switch network, and a port arbitration unit to arbitrate for the one or more memory ports.
    Type: Application
    Filed: August 30, 2005
    Publication date: March 23, 2006
    Applicant: Seiko Epson Corporation
    Inventors: Derek Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Nguyen
  • Patent number: 6986024
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: January 10, 2006
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Publication number: 20050283591
    Abstract: The present invention provides a system and method for managing load and store operations necessary for reading from and writing to memory or I/O in a superscalar RISC architecture environment. To perform this task, a load store unit is provided whose main purpose is to make load requests out of order whenever possible to get the load data back for use by an instruction execution unit as quickly as possible. A load operation can only be performed out of order if there are no address collisions and no write pendings. An address collision occurs when a read is requested at a memory location where an older instruction will be writing. Write pending refers to the case where an older instruction requests a store operation, but the store address has not yet been calculated. The data cache unit returns 8 bytes of unaligned data. The load/store unit aligns this data properly before it is returned to the instruction execution unit.
    Type: Application
    Filed: April 25, 2005
    Publication date: December 22, 2005
    Applicant: Seiko Epson Corporation
    Inventors: Cheryl Brashears, Johannes Wang, Le Nguyen, Derek Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Te-Li Lau, Sze-Shun Wang, Quang Trang
  • Patent number: 6965987
    Abstract: The present invention provides a system and method for managing load and store operations necessary for reading from and writing to memory or I/O in a superscalar RISC architecture environment. To perform this task, a load store unit is provided whose main purpose is to make load requests out of order whenever possible to get the load data back for use by an instruction execution unit as quickly as possible. A load operation can only be performed out of order if there are no address collisions and no write pendings. An address collision occurs when a read is requested at a memory location where an older instruction will be writing. Write pending refers to the case where an older instruction requests a store operation, but the store address has not yet been calculated. The data cache unit returns 8 bytes of unaligned data. The load/store unit aligns this data properly before it is returned to the instruction execution unit.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: November 15, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Cheryl Senter Brashears, Johannes Wang, Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6959375
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: October 25, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang
  • Patent number: 6954844
    Abstract: A memory control unit for controlling access, by one or more devices within a processor, to a memory array unit external to the processor via one or more memory ports of the processor. The memory control unit includes a switch network to transfer data between the one or more devices of the processor and the one or more memory ports of the processor. The memory control unit also includes a switch arbitration unit to arbitrate for the switch network, and a port arbitration unit to arbitrate for the one or more memory ports.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: October 11, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Derek J. Lentz, Yasuaki Hagiwara, Te-Li Lau, Cheng-Long Tang, Le Trong Nguyen
  • Patent number: 6948052
    Abstract: A high-performance, superscalar-based computer system with out-of-order instruction execution for enhanced resource utilization and performance throughput. The computer system fetches a plurality of fixed length instructions with a specified, sequential program order (in-order). The computer system includes an instruction execution unit including a register file, a plurality of functional units, and an instruction control unit for examining the instructions and scheduling the instructions for out-of-order execution by the functional units. The register file includes a set of temporary data registers that are utilized by the instruction execution control unit to receive data results generated by the functional units. The data results of each executed instruction are stored in the temporary data registers until all prior instructions have been executed, thereby retiring the executed instruction in-order.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: September 20, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Le Trong Nguyen, Derek J. Lentz, Yoshiyuki Miyayama, Sanjiv Garg, Yasuaki Hagiwara, Johannes Wang, Te-Li Lau, Sze-Shun Wang, Quang H. Trang