Patents by Inventor Tenko Yamashita

Tenko Yamashita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200388681
    Abstract: Techniques are provided to fabricate semiconductor integrated circuit devices which include complementary metal-oxide-semiconductor gate-all-around field-effect transistor devices (e.g., nanosheet field-effect transistor devices), wherein the channel orientation layout of N-type and P-type field-effect transistor devices are independently configured to provide enhanced carrier mobility in the channel layers of the different type field-effect transistor devices.
    Type: Application
    Filed: June 5, 2019
    Publication date: December 10, 2020
    Inventors: Tenko Yamashita, Myung-Hee Na
  • Publication number: 20200381300
    Abstract: A stacked semiconductor device structure and method for fabricating the same. The stacked semiconductor device structure includes a first vertical transport field effect transistor (VTFET) and a second VTFET stacked on the first VTFET. The structure further includes at least one power line and at least one ground line disposed within a backside of the stacked semiconductor structure. The method includes at least orientating a structure including a first VTFET and a second VTFET stacked on the first VTFET such that a multi-layer substrate, on which the first VTFET is formed, is above the first and second VTFETs. First and second contact trenches are formed through at least one layer of the multi-layer substrate. The first contact trench exposes a portion of a metal contact and the second contact trench exposes a portion of a source/drain region. The first and second contact trenches are filled with a contact material.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 3, 2020
    Inventors: Chen ZHANG, Heng WU, Kangguo CHENG, Tenko YAMASHITA
  • Patent number: 10854733
    Abstract: A semiconductor device that includes at least one fin structure and a gate structure present on a channel portion of the fin structure. An epitaxial semiconductor material is present on at least one of a source region portion and a drain region portion on the fin structure. The epitaxial semiconductor material includes a first portion having a substantially conformal thickness on a lower portion of the fin structure sidewall and a second portion having a substantially diamond shape that is present on an upper surface of the source portion and drain portion of the fin structure. A spacer present on first portion of the epitaxial semiconductor material.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: December 1, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Zuoguang Liu, Tenko Yamashita, Chun-Chen Yeh
  • Publication number: 20200365469
    Abstract: A method of forming a semiconductor structure includes forming one or more vertical fins each including a first semiconductor layer providing a vertical transport channel for a lower vertical transport field-effect transistor (VTFET) of a stacked VTFET structure, an isolation layer over the first semiconductor layer, and a second semiconductor layer over the isolation layer providing a vertical transport channel for an upper VTFET of the stacked VTFET structure. The method also includes forming a first gate stack including a first gate dielectric layer and a first gate conductor layer surrounding a portion of the first semiconductor layer of the vertical fins. The method further includes forming a second gate stack including a second gate dielectric layer and a second gate conductor layer surrounding a portion of the second semiconductor layer of the vertical fins. The first gate conductor layer and the second gate conductor layer are the same material.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Inventors: Tenko Yamashita, Takashi Ando, Oleg Gluschenkov, Chen Zhang, Koji Watanabe
  • Patent number: 10840345
    Abstract: A technique relates to a semiconductor device. A source or drain (S/D) contact liner is formed on one or more S/D regions. Annealing is performed to form a silicide layer around the one or more S/D regions, the silicide layer being formed at an interface between the S/D contact liner and the S/D regions. A block layer is formed into a pattern over the one or more S/D regions, such that a portion of the S/D contact liner is protected by the block layer. Unprotected portions of the S/D contact liner are removed, such that the S/D contact liner protected by the block layer remains over the one or more S/D regions. The block layer and S/D contacts are formed on the S/D contact liner over the one or more S/D regions.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: November 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andrew Greene, Dechao Guo, Tenko Yamashita, Veeraraghavan S. Basker, Robert Robison, Ardasheir Rahman
  • Patent number: 10833069
    Abstract: Logic gate designs (e.g., NAND, NOR, Inverter) for stacked VTFET designs are provided. In one aspect, a logic gate device is provided. The logic gate device includes: at least one top vertical transport field-effect transistor (VTFET1) sharing a fin with at least one bottom VTFET (VTFET2); a power rail connected to a power contact of the logic gate device; and a ground rail, adjacent to the power rail, connected to a ground contact of the logic gate device. A method of forming a logic gate device is also provided.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Chen Zhang, Tenko Yamashita, Terence B. Hook
  • Patent number: 10833019
    Abstract: A method of making a semiconductor device includes forming a first source/drain trench and a second source/drain trench over a first and second source/drain region, respectively; forming a first silicon dioxide layer in the first source/drain trench and a second silicon dioxide layer in the second source/drain trench; forming a first source/drain contact over the first source/drain region, the first source/drain contact including a first tri-layer contact disposed between the first silicon dioxide layer and a first conductive material; and forming a second source/drain contact over the second source/drain region, the second source/drain contact including a second tri-layer contact disposed between the second silicon dioxide layer and a second conductive material; wherein the first tri-layer contact includes a first metal oxide layer in contact with the first silicon dioxide layer, and the second tri-layer contact includes a second metal oxide layer in contact with the second silicon dioxide layer.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: November 10, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES, INC.
    Inventors: Takashi Ando, Hiroaki Niimi, Tenko Yamashita
  • Patent number: 10833081
    Abstract: Structures and methods that facilitate forming isolated contacts in stacked vertical transport field effect transistors (VTFETs). A pair of stacked VTFETs are formed on a substrate and isolated from each other. A via or hole is formed to extend to a drain of the second VTFET and a source of the first VTFET. The via is filled with a metal below the first VTFET to form the second contact. The second contact is capped with a non-conductive material and the remaining portion of the via is filled with metal to form the first contact. Alternatively, a via or hole is formed to extend to a source of the second VTFET and a source of the first VTFET. The second contact may serve as a local interconnect, a ground, or a voltage source connection.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: November 10, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Chen Zhang, Heng Wu, Joshua M. Rubin, Tenko Yamashita
  • Patent number: 10833079
    Abstract: A semiconductor structure includes a substrate, a vertical fin disposed over a top surface of the substrate, a first vertical transport field-effect transistor (VTFET) disposed over the top surface of the substrate surrounding a first portion of the vertical fin, an isolation layer disposed over the first VTFET surrounding a second portion of the vertical fin, and a second VTFET disposed over a top surface of the isolation layer surrounding a third portion of the vertical fin. The first portion of the vertical fin includes a first semiconductor layer with a first crystalline orientation providing a first vertical transport channel for the first VTFET, the second portion of the vertical fin includes an insulator, and the third portion of the vertical fin includes a second semiconductor layer with a second crystalline orientation providing a second vertical transport channel for the second VTFET.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Tenko Yamashita, Chen Zhang, Kangguo Cheng, Heng Wu
  • Publication number: 20200343222
    Abstract: A semiconductor device structure and method for fabricating the same. The semiconductor device structure includes a first vertical transport field effect transistor (VTFET) comprising a first semiconductor fin and a second VTFET stacked on the first VTFET. The second VTFET includes a second semiconductor fin that is separate and distinct from the first semiconductor fin. At least one insulating layer is disposed on a top surface of the first VTFET. The second VTFET is disposed on the at least one insulating layer. The method includes forming a first vertical VTFET on a first substrate and bonding a second substrate to and on top of the first VTFET. A second VTFET is formed on the second substrate.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Heng WU, Gen TSUTSUI, Tenko YAMASHITA
  • Publication number: 20200343241
    Abstract: A semiconductor device structure and method for fabricating the same. The semiconductor device structure includes a first vertical transport field effect transistor (VTFET) comprising at least a first gate structure having a first gate length, and a second VTFET stacked on the first VTFET and comprising at least a second gate structure having a second gate length that is less than the first gate length. The method includes forming, on a substrate, a first VTFET including at least a first gate structure having a first gate length. The method further includes forming a second VTFET stacked on the first VTFET and including at least a second gate structure having a second gate length that is less than the first gate length.
    Type: Application
    Filed: April 26, 2019
    Publication date: October 29, 2020
    Inventors: Heng WU, Chen ZHANG, Kangguo CHENG, Tenko YAMASHITA, Joshua M. RUBIN
  • Patent number: 10818599
    Abstract: An electrical device including a first semiconductor device having a silicon and germanium containing source and drain region, and a second semiconductor device having a silicon containing source and drain region. A first device contact to at least one of said silicon and germanium containing source and drain region of the first semiconductor device including a metal liner of an aluminum titanium and silicon alloy and a first tungsten fill. A second device contact is in contact with at least one of the silicon containing source and drain region of the second semiconductor device including a material stack of a titanium oxide layer and a titanium layer. The second device contact may further include a second tungsten fill.
    Type: Grant
    Filed: January 1, 2019
    Date of Patent: October 27, 2020
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, GLOBALFOUNDRIES INC.
    Inventors: Hiroaki Niimi, Shariq Siddiqui, Tenko Yamashita
  • Patent number: 10818776
    Abstract: A substrate structure having a set of nanosheet layers and a set of sacrificial layers stacked upon a substrate is received and a dummy gate is formed upon the nanosheet layers and the sacrificial layers. A portion of a subset of the set of sacrificial layers and a subset of the set of nanosheet layers is etched. A portion of a subset of the subset of sacrificial layers is etched to create divots within the sacrificial layers. A divot fill layer is deposited. The divot fill layer is etched to form an inner spacer between the nanosheet layers. A source/drain region is formed adjacent to the nanosheet layers and the divots. A remaining portion of the subset of the sacrificial layers is removed. The subset of the nanosheet layers is etched to a desired channel thickness producing faceted surfaces between the subset of nanosheet layers and the inner spacer.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: October 27, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Kangguo Cheng, Nicolas Loubet, Ruilong Xie, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 10811322
    Abstract: A method of forming a semiconductor structure includes forming vertical fins comprising a first semiconductor layer, an isolation layer and a second semiconductor layer, the first and second semiconductor layers providing vertical transport channels for lower and upper vertical transport field-effect transistors (VTFETs) of a stacked VTFET structure. The method also includes forming a first gate stack for the lower VTFET surrounding a first portion of the first semiconductor layer of the vertical fins. The method further includes forming a second gate stack for the upper VTFET surrounding a second portion of the second semiconductor layer of the vertical fins. The first and second portions have different sizes such that the upper and lower VTFETs of the stacked VTFET structure have different effective gate widths.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: October 20, 2020
    Assignee: International Business Machines Corporation
    Inventors: Heng Wu, Kangguo Cheng, Chen Zhang, Tenko Yamashita
  • Publication number: 20200328127
    Abstract: A method of forming a semiconductor structure includes forming one or more vertical fins each including a first semiconductor layer providing a vertical transport channel for a lower vertical transport field-effect transistor (VTFET) of a stacked VTFET structure, an isolation layer over the first semiconductor layer, and a second semiconductor layer over the isolation layer providing a vertical transport channel for an upper VTFET of the stacked VTFET structure. The method also includes forming a first gate stack including a first gate dielectric layer and a first gate conductor layer surrounding a portion of the first semiconductor layer of the vertical fins. The method further includes forming a second gate stack including a second gate dielectric layer and a second gate conductor layer surrounding a portion of the second semiconductor layer of the vertical fins. The first gate conductor layer and the second gate conductor layer are the same material.
    Type: Application
    Filed: April 15, 2019
    Publication date: October 15, 2020
    Inventors: Tenko Yamashita, Takashi Ando, Oleg Gluschenkov, Chen Zhang, Koji Watanabe
  • Publication number: 20200328120
    Abstract: A method of forming a semiconductor structure includes forming vertical fins comprising a first semiconductor layer, an isolation layer and a second semiconductor layer, the first and second semiconductor layers providing vertical transport channels for lower and upper vertical transport field-effect transistors (VTFETs) of a stacked VTFET structure. The method also includes forming a first gate stack for the lower VTFET surrounding a first portion of the first semiconductor layer of the vertical fins. The method further includes forming a second gate stack for the upper VTFET surrounding a second portion of the second semiconductor layer of the vertical fins. The first and second portions have different sizes such that the upper and lower VTFETs of the stacked VTFET structure have different effective gate widths.
    Type: Application
    Filed: April 10, 2019
    Publication date: October 15, 2020
    Inventors: Heng Wu, Kangguo Cheng, Chen Zhang, Tenko Yamashita
  • Publication number: 20200328209
    Abstract: Structures and methods that facilitate forming isolated contacts in stacked vertical transport field effect transistors (VTFETs). A pair of stacked VTFETs are formed on a substrate and isolated from each other. A via or hole is formed to extend to a drain of the second VTFET and a source of the first VTFET. The via is filled with a metal below the first VTFET to form the second contact. The second contact is capped with a non-conductive material and the remaining portion of the via is filled with metal to form the first contact. Alternatively, a via or hole is formed to extend to a source of the second VTFET and a source of the first VTFET. The second contact may serve as a local interconnect, a ground, or a voltage source connection.
    Type: Application
    Filed: April 9, 2019
    Publication date: October 15, 2020
    Inventors: Chen Zhang, Heng Wu, Joshua M. Rubin, Tenko Yamashita
  • Publication number: 20200328206
    Abstract: Techniques regarding anchors for fins comprised within stacked VTFET devices are provided. For example, one or more embodiments described herein can comprise an apparatus, which can further comprise a fin extending from a semiconductor body. The fin can be comprised within a stacked vertical transport field effect transistor device. The apparatus can also comprise a dielectric anchor extending from the semiconductor body and adjacent to the fin. Further, the dielectric anchor can be coupled to the fin.
    Type: Application
    Filed: April 12, 2019
    Publication date: October 15, 2020
    Inventors: Chen Zhang, Kangguo Cheng, Tenko Yamashita, Wenyu Xu, Fee Li Lie
  • Patent number: 10804270
    Abstract: A semiconductor material layer is deposited on a p-type source/drain region of a p-type transistor device and an n-type source/drain region of an n-type transistor device. The p-type device transistor device and the n-type transistor device are formed on a substrate of a semiconductor device. The semiconductor device includes a trench formed through an inter-level dielectric layer. The inter-level dielectric layer is formed over the n-type transistor device and the p-type transistor device. The trench exposes the p-type source/drain region of the p-type transistor device and the n-type source/drain region of the n-type transistor device. An element is implanted in the semiconductor material layer to form an amorphous layer on p-type source drain region and the n-type source/drain region. The amorphous layer is annealed to form a first metastable alloy layer upon the p-type source/drain region and a second metastable alloy layer upon the n-type source/drain region.
    Type: Grant
    Filed: October 18, 2017
    Date of Patent: October 13, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Oleg Gluschenkov, Shogo Mochizuki, Hiroaki Niimi, Tenko Yamashita, Chun-chen Yeh
  • Patent number: 10804136
    Abstract: Semiconductor fins of a monolithic semiconductor structure are electrically isolated using a dielectric material at the bottoms of the fins. Relatively tall semiconductor fins can be fabricated at a relatively narrow fin pitch while avoiding mechanical instability. The semiconductor fins are grown on sidewalls of semiconductor mandrels and over a dielectric layer. The semiconductor fins are supported during mandrel removal to provide mechanical stability. The semiconductor fins can be employed as channel regions of FinFET devices.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 13, 2020
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Chun-Chen Yeh, Tenko Yamashita, Ruilong Xie