Patents by Inventor Teresa Trowbridge

Teresa Trowbridge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8225496
    Abstract: The present invention generally relates to a system that can be used to form a photovoltaic device, or solar cell, using processing modules that are adapted to perform one or more steps in the solar cell formation process. The automated solar cell fab is generally an arrangement of automated processing modules and automation equipment that is used to form solar cell devices. The automated solar fab will thus generally comprise a substrate receiving module that is adapted to receive a substrate, one or more absorbing layer deposition cluster tools having at least one processing chamber that is adapted to deposit a silicon-containing layer on a surface of the substrate, one or more back contact deposition chambers, one or more material removal chambers, a solar cell encapsulation device, an autoclave module, an automated junction box attaching module, and one or more quality assurance modules that are adapted to test and qualify the completely formed solar cell device.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 24, 2012
    Assignee: Applied Materials, Inc.
    Inventors: Robert Z. Bachrach, Yong-Kee Chae, Soo Young Choi, Nicholas G. J. De Vries, Yacov Elgar, Eric A. Englhardt, Michel R. Frei, Charles Gay, Parris Hawkins, Choi (Gene) Ho, James Craig Hunter, Penchala N. Kankanala, Liwei Li, Wing Hoo (Hendrick) Lo, Danny Cam Toan Lu, Fang Mei, Stephen P. Murphy, Srujal (Steve) Patel, Matthew J. B. Saunders, Asaf Schlezinger, Shuran Sheng, Tzay-Fa (Jeff) Su, Jeffrey S. Sullivan, David Tanner, Teresa Trowbridge, Brice Walker, John M. White, Tae K. Won
  • Publication number: 20090077805
    Abstract: The present invention generally relates to a system that can be used to form a photovoltaic device, or solar cell, using processing modules that are adapted to perform one or more steps in the solar cell formation process. The automated solar cell fab is generally an arrangement of automated processing modules and automation equipment that is used to form solar cell devices. The automated solar fab will thus generally comprise a substrate receiving module that is adapted to receive a substrate, one or more absorbing layer deposition cluster tools having at least one processing chamber that is adapted to deposit a silicon-containing layer on a surface of the substrate, one or more back contact deposition chambers, one or more material removal chambers, a solar cell encapsulation device, an autoclave module, an automated junction box attaching module, and one or more quality assurance modules that are adapted to test and qualify the completely formed solar cell device.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 26, 2009
    Inventors: Robert Z. BACHRACH, Yong-Kee Chae, Soo Young Choi, Nicholas G.J. De Vries, Yacov Elgar, Eric A. Englhardt, Michael R. Frei, Charles Gay, Parris Hawkins, Choi (Gene) Ho, James Craig Hunter, Penchala N. Kankanala, Liwei Li, Wing Hoo (Hendrick) Lo, Danny Cam Toan Lu, Fang Mei, Stephen P. Murphy, Srujal (Steve) Patel, Matthew J.B. Saunders, Asaf Schlezinger, Shuran Sheng, Tzay-Fa (Jeff) Su, Jeffrey S. Sullivan, David Tanner, Teresa Trowbridge, Brice Walker, John M. White, Tae K. Won
  • Publication number: 20090077804
    Abstract: The present invention generally relates to a sectioning module positioned within an automated solar cell device fabrication system. The solar cell device fabrication system is adapted to receive a single large substrate and form multiple silicon thin film solar cell devices from the single large substrate.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 26, 2009
    Inventors: Robert Z. Bachrach, Yong-Kee Chae, Soo Young Choi, Nicholas G.J. De Vries, Yacov Elgar, Eric A. Englhardt, Michel R. Frei, Charles Gay, Parris Hawkins, Choi (Gene) Ho, James Craig Hunter, Penchala N. Kankanala, Liwei Li, Wing Hoo (Hendrick) Lo, Danny Cam Toan Lu, Fang Mei, Stephen P. Murphy, Srujal (Steve) Patel, Matthew J.B. Saunders, Asaf Schlezinger, Shuran Sheng, Tzay-Fa (Jeff) Su, Jeffrey S. Sullivan, David Tanner, Teresa Trowbridge, Brice Walker, John M. White, Tae K. Won
  • Publication number: 20070215049
    Abstract: Three wafer support fixtures transfer a wafer for thermal processing in an inverted orientation within a heating chamber. Two co-planar support fixtures grab the wafer edge inside the chamber from a blade within a 1.5 mm wafer exclusion zone and hold it above the edge ring during heat-up and then withdraw thermal processing. A third support fixture chucks the wafer backside and transfers it to sloping support areas of the edge ring. The three support fixtures inside the chamber are individually controlled from outside.
    Type: Application
    Filed: March 14, 2006
    Publication date: September 20, 2007
    Inventors: Wolfgang Aderhold, Teresa Trowbridge
  • Patent number: 6828234
    Abstract: A method that includes flowing an inert gas into an interior of a single wafer process chamber to create a pressure in the interior that is greater than an ambient pressure; and maintaining the greater interior pressure during a wafer transfer with the single wafer process chamber.
    Type: Grant
    Filed: March 26, 2002
    Date of Patent: December 7, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Norman Tam, Teresa Trowbridge
  • Publication number: 20030186554
    Abstract: A method that includes flowing an inert gas into an interior of a single wafer process chamber to create a pressure in the interior that is greater than an ambient pressure; and maintaining the greater interior pressure during a wafer transfer with the single wafer process chamber.
    Type: Application
    Filed: March 26, 2002
    Publication date: October 2, 2003
    Applicant: Applied Materials, Inc.
    Inventors: Norman Tam, Teresa Trowbridge
  • Patent number: 5939791
    Abstract: A sharp transition or step is first formed on the surface of a semiconductor material. A layer of interconnect metal is deposited by conformal CVD and substantially the same thickness of the metal as deposited is removed by anisotropic etching, leaving a narrow line of the interconnect metal at the step portion to serve as an interconnect line. Interconnect lines of 0.5 micron or below can be achieved since the process is not limited by photostepper resolution.
    Type: Grant
    Filed: December 27, 1995
    Date of Patent: August 17, 1999
    Assignee: VLSI Technology, Inc.
    Inventors: Teresa A. Trowbridge, Calvin T. Gabriel